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Abstract: A central goal in limnology is measurement of physical, biogeochemical, and biological process rates.
We can measure process rates from the temporal and spatial patterns they create in a measured variable, and
we use 3 approaches for making those measurements: the fixed-site approach for detecting temporal pattern at
a location, the snapshot approach for detecting spatial pattern at an instant in time, and the flow path approach
for detecting temporal pattern as it changes through space. To compare and contrast these approaches, we present
patterns in temperature collected simultaneously based on all 3 approaches. Translating these patterns into pro-
cess rates requires different assumptions for each approach, and these assumptions lead to uncertainty in process
rates. We propose that these assumptions and related uncertainty can be reduced by making simultaneous mea-
surements based on all 3 approaches. Each approach fills gaps in the spatial and temporal patterns measured by the
others, and these patterns can be combined to derive a process rate. We develop a conceptual theory to support
this strategy for measuring process rate based on 2 criteria: the mixing time of a water body and the analytical lim-
itations of the measurement. This new strategy for measuring process rates in aquatic environments has the po-
tential to increase the resolution of rate measurements, reduce their uncertainty, and enhance limnologists’ ability
to resolve process rates from an increasing flow of environmental data.
Key words: Lagrangian, Eulerian, synoptic, environmental sensing, physical mixing, aquatic biogeochemistry, ref-
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MEASUREMENT APPROACHES IN LIMNOLOGY
The study of streams, rivers, lakes, and estuaries is entering
a new era. Our science is being transformed from one chal-
lenged to collect sufficient data to measure a process to
one that is generating so many signals that we need to dis-
cern what those signals mean. The quantity, breadth, fre-
quency, and resolution of data continue to growwith increas-
ing use of miniaturized sensors, real-time measurements,
and autonomous platforms. These technologies tempt us
to imagine a future in which limnologists can measure the
rate of many processes simultaneously at almost any scale
in near real-time, an ideal situation for managers and scien-
tists. However, this growing stream of data brings with it the
problem of detecting the signal we seek from the noise of
overlapping spatiotemporal scales. Here, we show how lim-
nologists can more fully measure and resolve the rates of
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processes that cause spatiotemporal patterns by using com-
binations of alternative measurement approaches.

In an observational approach, limnologists study environ-
mental processes by first measuring a variable, and repeat-
ing the measurement over time or space. The differences in
the value of the variable over time or space are interpreted as
patterns that they create. From the combination of patterns
and an understanding of first principles (e.g., photosynthe-
sis, turbulence), we infer rates of processes. These process
rates (e.g., biological production, photolytic oxidation, mor-
tality, reaction kinetics) are a fundamental pursuit of lim-
nologists.

The starting point of limnology is generating patterns of
variables from which to most accurately discern rates of
processes. This step requires limnologists to decide which
pattern will best inform their interpretation: a pattern over
duke.edu

d comments on topics of interest to aquatic scientists. The editorial board
in Freshwater Science. Format and style may be less formal than conven-
come if it is likely to stimulate worthwhile discussion. Alternative points of
ll submissions will receive the usual reviews and editorial assessments.

lished online 13 June 2017.
r Science. 453



454 | New strategies for measuring rates S. H. Ensign et al.
space, a pattern over time, or some combination. Limnol-
ogists have generated tremendous insights through their
analysis of temporal patterns—repeated observations over
time at a fixed location (e.g., water temperature data from
an anchored buoy). A 2nd measurement approach is to doc-
ument purely spatial patterns at a point in time: ‘snapshots’
of variables (e.g., satellite images of water temperature). A
3rd measurement approach is to generate a single, simulta-
neous temporal and spatial pattern from the change in a var-
iable collected along a flow path (e.g., water temperature data
generated by a drifting buoy). To decide which approach or
combination of approaches to use, we must consider the un-
derlying reference frame for each approach and its limita-
tions for inferring process rate from temporal and spatial
pattern.
Fixed-site approach (Eulerian reference frame)
Beginning in the 1950s, fixed-site time series of variables

in aquatic ecosystems became the backbone of a new era of
ecosystem-based research in which variables were inter-
preted as holistic measures of a spatially bounded system
(e.g., a freshwater spring; Odum 1957). When applied to
rivers, the watershed defined the ecosystem boundaries
and fixed-site measurements provided integratedmeasures
of mass output from the watershed (Likens et al. 1967). These
measurement approaches correspond conceptually with the
Eulerian reference frame in which fluxes are observed as
they pass a point over time (Fig. 1, Table 1). This Eulerian
reference frame is particularlywell-suited toquantify changes
in a process rate over time because it allows integration (i.e.,
homogenization) of spatial variability (Doyle and Ensign
2009).

Rapid development of in situ sensing and communica-
tions technology has simplified the fixed-site approach and
transformed it from discrete measurements to continuous
time series. Sensors continue to decrease in size, cost, and
power consumption, while accuracy and temporal resolu-
tion continue to increase. For example, within the last 20 y
NO3

2 sensors have progressed from ion-selective electrodes
to optics (Pellerin et al. 2016) with highly sensitive micro-
electrodes on the horizon (Gartia et al. 2012). Chemical var-
iables are now measured on the order of minutes and phys-
ical variables can be measured every second. Progress in
wireless communication (Rundel et al. 2009) and emerging
technology in wireless power (Park et al. 2013) have paral-
leled innovations in sensing, thereby giving the fixed-site
approach a strong foothold.

The fixed-site approach has 3 limitations in terms of
elucidating rates of processes from measured changes in
variables (Table 2). First, the size of the ‘box’ (distance be-
tween 2 measurement points, or the space represented by
a single point) constrains the spatial scale that can be con-
sidered; no space smaller than the size of the boundedmea-
surements is directly observable. For instance, dissolved O2
measured up- and downstream of a pool–riffle sequence
would provide information on ecosystem metabolism of
that sequence, but the interpreter would not know whether
the temporal signature was the result of the processes oc-
curring in the pool, in the riffle, or both. The 2nd problem
is that the fixed-site approach requires bounding the sys-
tem (i.e., the boundaries of the box) a priori, and ecosystem
boundaries may not be as sharp or discernible as are typi-
cally imagined (Post et al. 2007).

The 3rd limitation is related to the assumption of the ho-
mogeneity of the system within the black box of a fixed-site
measurement. Temporal changes are assumed to represent
the cumulative effect of all processes occurring within the
box and are identical regardless of measurement location
within the box. This assumption is valid if all of the particles
or solutes through that space are well-mixed such that a
sampling point integrates variability in temporal and spatial
processes. However, if the pathways by which particles or
solutes travel through the bounded space are not well-
mixed, then what appears as a temporal signature may in
fact be the peculiarities (i.e., spatial variability) of a partic-
ular flow path through a system that is conceptualized as
homogenous. This limitation of fixed-site measurements
often is cited to explain temporal variation in fixed-site data.
Van de Bogert et al. (2012, p. 1690) explained such flow
path variation in lake dissolved O2 measurements: “. . .
some of the variation reflects . . . physical processes caus-
ing the sensor to measure a parcel of water with differing
metabolic and physical histories for some portions of the
day.” In summary, spatial variability in process may beman-
ifest or interpreted as temporal variability in measured var-
iables.
Snapshot approach (synoptic reference frame)
In the same way that the Eulerian reference frame ho-

mogenizes space tomaximize temporal insights, the synop-
tic reference frame homogenizes time to maximize spatial
insights (Fig. 1). In its purest form, synoptic data capture
spatial patterns in a variable without any intervening tem-
poral pattern: remote sensing and coordinated spatial grab
sampling (Dent and Grimm 1999) are examples of synoptic
data. The spatial resolution of synoptic data can be imag-
ined as a pixel that represents the spatially weighted aver-
age of a variable within the pixel space. The power of syn-
optic data for limnology is the ability to measure a spatial
pattern (and the underlying spatial pattern in process rate)
without the influence of a temporal pattern affecting the
variable between measurements.

Recent technological advancements are enabling snap-
shot measurements at scales not previously possible with
satellite remote sensing (Table 1). Distributed fiber-optic
temperature sensors are widely used to collect snapshot
temperature data along a river axis over hundreds of me-
ters with a resolution at the centimeter scale, while airplane
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and drone-mounted thermal infrared radiometers canmap
temperature patterns longitudinally and laterally at high spa-
tial resolution (Deitchman and Loheide 2012, Vatland et al.
2015). Drones are enabling a range of snapshot measure-
ments of variables, including chlorophyll, turbidity, and dis-
solved organic matter (e.g., Fichot et al. 2016). Vessel-based
snapshot sampling uses both wet-chemistry and sensor-
based variablemeasurements (Croswell et al. 2012, Crawford
Table 1. Examples of methods and representative studies using fixed-site, snapshot, and flow path approaches.

Approach Reference Water body Process
Method (numbers refer

to Fig. 1)

Fixed-site Houser et al. 2015 Upper Mississippi,
Wisconsin, USA

Ecosystem metabolism 1. Stationary buoy/sensor

Hunt et al. 2012 Mitchell River, Australia Ecosystem metabolism 2. Stationary sensor network

Newbold et al. 1981 Walker Branch,
Tennessee, USA

N and P uptake 3. Stationary sampling with
Lagrangian concept
(e.g., nutrient spiraling)

Bohlke et al. 2004 Sugar Creek, Indiana, USA Denitrification 4. Stationary sampling with
conservative tracers

Snapshot Crawford et al. 2014 Lake Mendota, Upper
Mississippi, others

Characterization of C and
N sources, sinks

5. Synoptic survey from boat
(e.g., FLAME)

Bosc et al. 2004 Global ocean Primary production 6. Remote sensing (e.g., seaWIF)

Vogt et al. 2010 River Thur, Switzerland Groundwater–stream
exchange

7. Distributed fiber optic
temperature sensors

Croswell et al. 2012 Neuse River, North Carolina Air–water CO2 exchange 8. Synoptic survey from boat
(e.g., Dataflow)

Flow path Riser and Johnson 2008 Pacific Ocean O2 production 9. Profiling drifters (e.g., ARGO)

Gattuso et al. 1996 Great Barrier Reef Coral metabolism 10. Surface drifters

This study Neuse River O2 dynamics 11. Drifters (e.g., HydroSphere)

Hensley et al. 2014 Florida springs Autotrophic NO3 uptake 12. Drifting survey from boat
Figure 1. Triad (ternary diagram) of measurement frameworks with examples from Table 1 plotted qualitatively in this measurement
space.
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et al. 2014, Hensley et al. 2014). In practice, the ability of
vessel-based sampling to collect a snapshot independently
of temporal variability between points is limited by speed and,
therefore, represents a hybrid of measurement approaches
(Fig. 1).

Inferring process rates from snapshot measurements is
limited in 2 ways (Table 2). First, spatial differences in the
rate of a process cannot be separated from temporal changes
in the process rate as water moves across the field of obser-
vation. For example, a hot spot of chlorophyll in an estuary
could indicate a persistent location of high plankton growth
rate or water flow patterns that cause phytoplankton to
accumulate in that particular location. Inability to detect
temporal change in process rates from snapshot data is the
reciprocal of the fixed-site limitation of parsing spatial differ-
ences from process-rate changes over time.

Second, spatial patterns in snapshot data can reflect a
legacy of process rates that occurred in the past, and this
legacy affects interpretation of process rates. For example,
Hensley et al. (2014, p. 1168) summarized how the time of
day a snapshot was taken affected interpretation of autotro-
phicNO3

2 removal from a profile along a river reach: “ . . . as
profile length increases so do effects of temporally varying
removal.” In summary, snapshot data enable interpretation
of spatial changes in process rates but not how those rates
occur over time.
Flow path approach (Lagrangian reference frame)
The variation between particular flow paths, or even his-

tories, of water are the focus for the Lagrangian reference
frame, which allows direct measurement of the movement
of objects with the measurement of changes in variables
associated with those objects over time (Fig. 1). In theory,
the Lagrangian reference frame follows the movement of
an object that is not geographically fixed, but instead refer-
enced only to its change in position over time (Doyle and
Ensign 2009). To some extent, this approach removes the
need for arbitrary, human-defined boundaries of the eco-
system under study (Post et al. 2007). In practice, the flow
path approach serves the practical purpose of transport-
ing measuring equipment spatially and coupling variable
changes with the transport time scales of water. This cou-
pling of variables with transport enables measurement of
specific process rates that are unique to specific flow paths.
Unbundling the average process rate in a river into the rate
occurring in backwaters vs a deep channel, for example,
would be a powerful capability in limnology. Hensley et al.
(2014, p. 1168) expressed the benefit of the flowpathmethod
this way (when applied to studying biogeochemical hotspots
along a river): “Whereas an Eulerian reference frame aggre-
gates reach-scale processes, using a Lagrangian-based ap-
proach disaggregates these processes and helps identify re-
moval hot spots and their attendant controls.”

Flow path measurements are being conducted by using
manned vessels to track water moving at an average surface-
flow velocity and to measure concentration changes (Table 1;
Hitchcock et al. 2004, Dagg et al. 2005, Gruberts et al. 2012,
Gruberts and Paidere 2014). Floating instrument platforms
also are being used to mount sensors and enable deploy-
ment to capture flowpath variability in process rates in lakes
(Stocker and Imberger 2003), rivers (Spencer et al. 2014),
Table 2. Comparison of the information gained and limitations of fixed-site, snapshot, and flow path measurement approaches.

Approach Information gained Limitations

Fixed-site 1. Temporal change in a process rate upstream 1. Requires knowledge of transport time scale (e.g.,
velocity, mixing) to calculate a process rate

2. Physicochemical variability in a mixing length
upstream

2. Spatially integrated measure of physical and biological
process rates

3. Temporal change in rate integrates spatial
variability

3. Cannot differentiate spatially unique process rates or
lateral inputs from a change in process rate over time

Snapshot 1. Reach-scale process rate expressed over distance 1. Requires knowledge of transport time scale (e.g.,
velocity, mixing) to calculate a process rate

2. Temporal change in a process rate expressed over
distance

2. Spatially integrated measure of physical and biological
process rates

3. Process rate and change without the influence of
mixing variability

3. Cannot differentiate a temporal change in rate from the
process rate expressed over space

Flow path 1. Process rate occurring over a discrete flow path 1. The flow path measured may not reflect reach-average
conditions

2. Spatiotemporal variability over a discrete flow path 2. The flow path may not adequately follow the relevant
scale of water movement

3. Location of discontinuities (e.g., lateral inputs) 3. Cannot separate temporal and spatial variability in
process rate
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and estuaries (Schacht and Lemckert 2007, Mullarney and
Henderson 2013, Landon et al. 2014). Un-instrumented
drifters are being used to track the movement of water par-
cels (MacMahan et al. 2009, Oroza et al. 2013, Wu et al.
2015), and the flow path of individual particles can be mea-
sured with tracers (Kemp et al. 2010). ‘Pseudo-Lagrangian’
techniques can be used to analyze fixed-site data based on
temporal offsets that mimic the elapsed time in water travel,
as in the 2-station, open-water metabolism method (Odum
1956), grab sampling methods (Brown et al. 2009), nutrient-
uptake measurements (Stream Solute Workshop 1990), and
other analytical methods (Imberger et al. 1983). Only re-
cently have autonomous, free-drifting, sensor-based mea-
surements been developed to measure flow paths in a pas-
sive 3-dimensional framework.

In practice, the flow path measurement approach has
3 limitations for measuring process rates (Table 2). First,
measurements reflect only 1 of a myriad of flow paths. The
greater the difference in process rate among flow paths, the
more flow paths must be measured to estimate an integrated
process rate. Second, the physical scale of flow pathmeasure-
ment is limited to the size of the measurement device and its
physical coherence with water movement. Third, each path
may have a unique temporal signature.
Example of measurement using 3 approaches
Most of the research cited above relied on a single-

measurement approach, and the contrasts and comparisons
we have made between approaches are difficult to visualize.
To better illustrate, compare, and contrast spatiotemporal
patterns in a variablemeasuredwith each approach,we show
temperature data collected simultaneously based on all 3 ap-
proaches along a river reach. Our brief description of the
data focuses on spatiotemporal patterns.

Methods Data were collected in the Neuse River, which
originates in the Piedmont of North Carolina, crosses the
coastal plain, and terminates as a 5th-order river at the Pam-
lico Sound (Fig. 2A). We measured a 19-km reach of the
river characterized by extensive coastal plain riparian flood-
plains, a gradient of 0.00005, and a channel ~80-m wide.
Data were collected from 12 to 13 October 2015 when dis-
charge at US Geological Survey (USGS) stream gage at the
head of our study reach (Neuse River Fort Barnwell, North
Carolina, 02091814) averaged 238 m3/s.

Fixed-site, time-series data were collected at the up- and
downstream ends of the study reach byHOBO sensors (On-
set, Bourne, Massachusetts) attached to a dock ~50 cm be-
low the water surface. Measurements were made for 24 h
starting at midnight 12 October 2015. Snapshot data were
collected with a temperature sensor (Campbell Scientific,
Logan, Utah) attached to a powerboat driven the length of
the study reach between 1015 and 1310 h on 13 October
2015 (Fig. 2B, C). Flow path data were collected with a Hy-
droSphere (Planktos Instruments, Morehead City, North
Carolina) adjusted for neutral buoyancy (Fig. 2D). The Hy-
droSphere is an underwater, autonomous, drifting, spheri-
cal (0.5-m diameter) multisensor platform that monitors
its position at the surface by a global positioning system
(GPS) and emits a radio signal for tracking when submerged.
TheHydroSphere traveled the entire study reach submerged
between 1300 and 2045 h on 12 October 2015. It profiled
vertically through the water column as dictated by vertical
mixing andwas tracked froma boat bymeans of a directional
antenna and radio receiver.

Results Temperature at the up- and downstream ends of
the study reach showed a diurnal warming and cooling
trend (Fig. 3A). Water entering the study reach from up-
stream warmed slightly over the 24-h period, whereas wa-
ter exiting the reach showed net cooling. The flow path
drifter showed that travel time between the upstream and
downstream fixed-sites was 7.75 h. The initial and final
flow path temperatures matched the fixed-site tempera-
ture. We presume this condition would occur regardless
of the time theflowpathmeasurements began. For example,
if the drifter were released at the beginning of the measure-
ment period (~19.47C at 2400 h), it would measure ~19.07C
when it passed the downstream fixed-site at 0745 h. The
flow path data also highlighted spatiotemporal variability
in the reach that was not captured in fixed-site data.

The snapshot data reflect the spatial variation in warm-
ing along the reach during mid-day (Fig. 3B). Distinct de-
creases in surface water temperature occurred at 5 and
12 km, indicating mixing of cooler water into the channel.
This mixing could have been a result of lateral or ground-
water inflow or mixing within the water column. Flow path
temperature was measured over a different period of time,
but the vertical temperature gradient detected within the
water column (Fig. 3C) provides useful information for
interpreting the snapshot pattern. We presume that the
2 abrupt decreases in snapshot temperature resulted from
turbulent mixing in the water column that brought cooler
bottom water to the surface.

These data highlight complementarity of 3 simulta-
neously conducted measurement approaches for charac-
terizing spatiotemporal patterns in a variable from which
process rates could be derived. We will focus on this com-
plementarity later in this review. First, we will explore how
transport time scale and mixing, also highlighted in our
temperature data, affect measurement of spatiotemporal
patterns and process rates.
A THEORY FOR SELECTING A MEASUREMENT
APPROACH

Howdo limnologists choose between these 3 approaches
to measure the rate of a process in a particular ecosystem?
Practical considerations include the types of sensors and as-



458 | New strategies for measuring rates S. H. Ensign et al.
say techniques available and physical access to the ecosys-
tem. Theoretically, choice of a measurement approach also
depends on which pattern in a variable, spatial or temporal,
a limnologist expects to provide themost information about
the rate of a process. If the process rate of interest varies lit-
tle spatially but varies greatly temporally, then a fixed-site
time serieswould provide themost information. In contrast,
if spatial variability is much greater than temporal variabil-
ity, then the snapshot approach would provide the most
information. If spatial and temporal variability are compa-
rable, then the flow path approach provides a compromise
that captures both sources of variability. In practice, a lim-
nologist may not know both sources of variability before
making measurements and may not have a choice in the
measurement approach used. However, a diagnostic tool
would be useful for evaluating the suitability of the chosen
measurement approach for evaluating spatial and temporal
patterns and the subsequent rate of a process.

To compare how a given combination of spatial and tem-
poral variability is represented by each measurement ap-
proach, spatial and temporal variability must be considered
in the context of the time it takes water masses to mix and
the time it takes a process to change the concentration of
a variable.Wewill define what is meant here bymixing time
and process time using the example of rivers. In rivers,
the time required for water masses to mix fully across the
cross-section can be translated into a distance downstream
(mixing length) resulting fromdispersion (Fig. 4). For exam-
ple, a storm sewer could introduce a plume of runoff into a
river that cannot be measured on the opposite river bank
until 100m downstream (mixing length is 100m). At a flow
velocity of 1 m/s, water moving past the storm sewer would
require 100 s to mix across the river. This example illus-
trates how space and time are related in moving water eco-
systems and, thus, how mixing time can be converted to
mixing length.

Process time is the time necessary for a rate of a process
to produce a measurable change in a variable. Process time
is a function of the rate of a process, the volume of water in
which the change in concentration is being measured, and
the resolution and accuracy of the variable measurement
(Fig. 4). For example, consider the time required to mea-
Figure 2. Location of Neuse River watershed in the eastern USA (North Carolina) and the planform of the river channel and flood-
plain (A), vessel used for snapshot survey of study reach (B), Neuse River at low river stage (C), and HydroSphere at the water sur-
face after preprogrammed, automated surfacing at the end of the study reach (D).
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sure a change in temperature at the surface of a river for a
given intensity of sunlight (i.e., the process of converting
solar radiation into heat energy as measured by the vari-
able, water temperature). Measuring a change in tempera-
ture of a large, deep river will take longer when using a
thermometer with 1.07C resolution than in a small, shallow
stream when using a thermometer with 0.17C resolution.
The time required to observe a temperature change in ei-
Figure 4. Conceptual depiction of 3 relationships between longitudinal mixing length and process length in a river.
Figure 3. Temperature in the study reach shown in Fig. 2 based on fixed-site sensors and flow path measurements (A), flow path
and snapshot measurements (B), and variability in temperature over depth in the water column in flow path measurements (C).
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ther situation is the process time, and the distance water
moves downstream over that period of time is the process
length.

Knowledge of mixing time and process time enables us
to sort any combination of spatial and temporal variability
into a variable space for diagnostic analysis (suitability) of
fixed-site, snapshot, and flow path suitability for character-
izing a process rate. If no spatial variation in a process rate
occurred across the fully mixed length of a river but tem-
poral variation occurred in the process rate during the time
it tookmixing to occur, then fixed-sitemeasurements would
allow the best characterization of that change in process rate.
A snapshot would not show any spatial pattern in the vari-
able being measured. This scenario would be represented
as a point in the lower right corner of Fig. 5A. In contrast,
if the process rate varied spatially over the length of river re-
quired for mixing but no temporal variation occurred, then
the only way to detect a pattern and measure a process rate
would be to use the snapshot approach. Fixed-site measure-
ment would not show any difference in the variable over the
time and spatial scale at which the process rate varied. This
scenario would be represented as a point in the upper left
corner of Fig. 5A.

The 2 examples above represent extreme conditions in
spatial and temporal variability in which one or the other is
negligible. A 3rd example, in which spatial and temporal
variability in a process rate are similar, would result in a
point falling near the 1∶1 line in Fig. 5A (green portion).
In this case, the flow path approach provides a compromise
between the fixed-site and snapshot approaches that allows
simultaneous characterization of both spatial and temporal
variability. In other words, flow path measurement con-
joins spatial variability in process rate with temporal vari-
ability in process rate, and neither source of variability is
measured in isolation from the other. The flow path mea-
surement enables one to measure changes in a process rate
that occur more rapidly and over a shorter distance than
physical mixing, an advantage over the fixed-site and snap-
shot measurements, which cannot detect changes in a pro-
cess rate at less than the mixing time. This advantage of the
flow path approach spreads over a wider range of variability
when process length and time are shorter and more rapid
than mixing (Fig. 5B). Shorter process length and faster
process time potentially increase the heterogeneity of con-
ditions for individual flow paths, and this variation in con-
ditions can change process rates that can be detected only
with flow path measurements.
A STRATEGY OF MULTI-APPROACH
MEASUREMENTS

Rather than thinking of the different measurement ap-
proaches in isolation, we now consider how the 3 measure-
ment approaches, their corresponding reference frames,
and resultant analytical frameworks can provide comple-
mentary data to interpret process rates over space and time.
Even the most optimized measurement approach provides
only a portion of the information about a process rate,
so it may be more effective to use multiple measurement
approaches simultaneously, thereby using information de-
rived from each approach to fill the gap in knowledge about
process rate left by the other approaches. Limnologists have
developed almost intuitive strategies that combinemultiple
approaches, such as nutrient spiraling and stream metabo-
Figure 5. Match between measurement approach and relative spatiotemporal variability over mixing scales when process length
and time are longer (slower) than mixing length and time (A) and when process length and time are shorter (faster) than mixing
length and time (B).
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lism, both of which interpret fixed-site measurements in
a Lagrangian reference frame. Statistical approaches have
been developed to link spatial and temporal variation in
variables at different scales measured with a combination
ofmeasurement approaches (e.g., Vatland et al. 2015).How-
ever, a framework does not exist for multiple measurement
approaches by which to convert spatial and temporal pat-
terns of a variable into a process rate.

By being precise about how we derive (interpret) pro-
cess rates from patterns in variables, we can more easily
recognize the information gained from simultaneous mea-
surements from the other approaches. To demonstrate this
information gain, we developed a simple numerical example
for visualizing the spatial and temporal patterns in a variable
observed from the fixed-site, flow path, and snapshot per-
spectives. Our example considers a hypothetical river reach
downstream from a source of constant-temperature water,
such as a groundwater-fed spring. Water traveling the river
reach cools at a different rate in the upper than the lower
half of the reach because of differences in lateral groundwa-
ter inflow. In addition, the rate of cooling increases across
the entire river reach at sunset. We simulated temperature
at one fixed-site, one snapshot in time, and one flow path on
this hypothetical river reach to help us discuss what these
patterns reveal about the rates of a process that changes in
space and time. The rate of river water temperature change
is the process rate of interest.

Anumerical, 1-dimensional advection–dispersion–reaction
model was used to simulate temperature (T ) in the river
reach over time (t) and space (x), where U is the velocity
(m/s), D is the dispersion coefficient (m2/s), k is a 0-order
rate of temperature change (7C/s), kt is the rate of change
relative to time (7C/s) and kx is the rate of change relative
to space (7C/s).

∂T
∂t

5 2U
∂T
∂x

1 D
∂2T
∂x2

1 k (Eq. 1)

k 5 kt 1 kx (Eq. 2)

The upstream boundary conditionwas 97C, and, for sim-
plicity of discussion, dispersion was assumed to be 0. The
simulated reach was 100m and velocity was 0.016m/s. From
0 to 25 min, kt was20.00017C/s and from 26 to 100 min, kt
was 20.00037C/s. From 0 to 50 m, kx was 20.000057C/s,
and from 51 to 100 m, kx was 20.000137C/s. The model
was initialized to steady state with k520.000157C/s from
0 to 50 m, and k5 20.000237C/s from 51 to 100 m, then a
100-min simulation period began with kt changing after
25 min. The model results provide us with a synthetic data
set with which to analyze process rates while assuming we
had no prior knowledge of the river reach, its upstream
condition, or environmental drivers affecting temperature
change. Figure 6A provides a schematic of the model and
rates of temperature change. Selection of a different loca-
tion of fixed-site measurement or time of snapshot mea-
surement would not change our interpretation of the pro-
cess rates described next.

Fixed-site
A change in temperature over time indicates a change

in the rate of a process occurring over some distance up-
stream (Fig. 6B). With no prior knowledge of the study
reach other than the fixed-site data, we would not know
if the rate of temperature change upstream was positive,
negative, or 0. Seventy minutes elapsed while the temper-
ature changed, but without knowing flow velocity we can-
not calculate the distance over which temperature changed
upstream from our sensor. The stabilization of tempera-
ture after 95min tells us that the rate of temperature change
was negative over some distance upstream or that the rate
of change was 0 while water temperature entering the up-
stream reach changed. In summary, none of the 4 distinct
rates occurring in time and space were apparent from the
fixed-site data, but we know that a change of 20.00027C/s
occurred in the rate over time.
Snapshot
The change in temperature over distance at a single time

showed the combination of spatial and temporal changes in
rate over the reach (Fig. 6C). Ninety minutes into the mea-
surement period, the snapshot exhibits 3 segments with
different slopes, and these locations (50 and 65 m) provide
information on where or when the rate changed. However,
we cannot estimate a rate (7C/s) from these slopes (7C/m)
because we do not know flow velocity, and we cannot dis-
tinguish spatial (kx) from temporal (kt) changes in rate that
created the 3 segments.
Flow path
The flow path measurement also revealed 3 segments

with different slopes and an accompanying flow velocity
(Fig. 6D). During the first 25 min in the upper 25 m of the
river reach temperature decreased by 0.000157C/s, from
25 to 50 min (25 to 50 m) the temperature decreased by
0.000357C/s, from 50 to 100min (50 to 100 m) temperature
decreased by 0.000437C/s. However, we cannot determine
whether the changes in rate were caused by time-varying
(kt) or space-varying (kx) rates.
Combining data from 3 approaches
By combining data from all 3 approaches we obtain per-

fect knowledge of not only the aggregate rates in space and
time (k), but also the specific contribution of temporal (kt)
and spatial (kx) rate changes that affected the aggregate rate
(Table 3). First, we convert the slopes measured by the
snapshot (7C/m) to rates (7C/s) by dividing by flow veloc-
ity measured along the flow path (elapsed time required
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for measurement divided by reach length). The snapshot
data revealed rates of 20.000357C/s, 20.000437C/s, and
20.000237C/s. Combining rates at their respective loca-
tions and times with rates measured from flow path data
(Table 4), we have 4 distinct aggregate rates that apply over
the complete time and space of the river reach. A change in
slope occurred at the same location in both the snapshot
and flow path data, indicating that a change in rate occurred
in space at this location (20.000087C/s). The fixed-site data
confirms that the change in slope at 25 m was a result of a
Table 3. Derivation of process rates in time and space from combinations of measurement approaches. U 5 velocity,
k 5 rate of temperature change, t(Dkt) 5 time at which a rate change occurred across the reach, and x(Dkx) 5 location
at which a rate change occurred, i 5 time or location between beginning (t0, x0) and end (tn, xn) of a sequence.

Approach
Fixed-site

at xi Snapshot at ti Flow path from x0 to xn and t0 to tn

– Dkt k/U for all x when ti < t(Dkt)
(k/U ) 1 Dkt for all x when
ti > t(Dkt)

k for all (xi, ti) when ti 5 xi/U

Fixed-site at xi – k/U for all x when ti > t(Dkt) Dkx from x0 to xi and t0 to ti < xi/U

Snapshot at ti – – k for all x and t

Fixed-site at xi and
snapshot at ti

– – Distinguish all Dkx from Dkt for all x if
snapshot occurs before Dkt
Figure 6. Schematic of a numerical model simulating spatially and temporally variable rates of temperature change in a river reach
(A), temperature at a fixed-site 70 m downstream from the spring (B), temperature during a snapshot 90 min after measurement be-
gan (C), and temperature measured by a drifter along a flow path (D).
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change in rate in time (20.00027C/s). In summary, we suc-
cessfully derived all rates of temperature change and parti-
tioned changes in rate over time from changes in rate over
space with one set of fixed-site, snapshot, and flow path
measurements. No prior knowledge of boundary condi-
tions, flow velocities, or process drivers was required to de-
rive these process rates from these synthetic data.

Translation of this theory to practice requires consider-
ation of the effects of mixing time and process time on spa-
tiotemporal patterns and howwemeasure them. First, mea-
suring more frequently than the process time (or length)
does not provide additional information in multi-approach
measurements. Second, measuring more frequently than
themixing time (or length) will introduce variability and un-
certainty in rate measurements proportional to the spatial
heterogeneity in the parameter. Third, only changes in pro-
cess rate lasting longer than the mixing time can be deter-
mined.

Our simulation of snapshot data assumes high-resolution
spatial data (1 m). In practice, snapshot data often integrate
conditions over a larger spatial scale. This situation can be
an advantage for the application of multi-approach mea-
surements because whenmeasurement resolution ≥mixing
length, the spatial variation between measurements is equal
and does not affect patterns in the variable. Unlike the fixed-
site approach, snapshot measurements can remove spatial
variability if the measurement resolution ≥ mixing time,
but the cost is a reduction in the ability to detect spatial dif-
ferences in process rates occurring over distances less than
the mixing length.

In practice, flow pathmeasurements are not constrained
by the same mixing time limitations as fixed-site and snap-
shot approaches because the reference frame is a matrix of
mixing water with different biogeochemical ‘histories’.
Measurementsmade over time (or space) reflect the history
of biogeochemical influences that are contingent on flow
path. The magnitude of this contingency may increase as
mixing length increases. For example, it takes >100 km
for the Purús River to mix across the Solimões River (up-
stream end member of the Amazon River; Bouchez et al.
2010). Thus, a flow path measured along one side of the
confluence could be very different than the other side, and
this effect will continue formany kmdownstream. Likewise,
highly variable process rates will increase contingency ef-
fects because particles, solutes, and organisms are exposed
to a broader set of possible conditions depending on the
particular path (and subsequent process rates) towhich they
are exposed. Similar to the fixed-site approach, the ability
to discern a change in a variable over time (a process rate)
depends on the magnitude of the process rate relative to
the variability in rates between flow paths.
SUMMARY AND CONCLUSIONS
Application of 3 approaches tomeasure spatial and tem-

poral patterns simultaneously reduces the need for extrap-
olation and assumptions for estimating process rates. Lim-
nologists have leveraged mixed-approaches in the past to
understand processes in moving water, including ecosys-
tem metabolism, although never with all 3 approaches si-
multaneously. For example, the diel O2method can be used
to calculate ecosystem metabolism by interpreting fixed-
site time-series data through a pseudo-Lagrangian reference
frame based on reach-scale flow velocity (Odum 1956). An-
Table 4. Process rates, changes in spatial and temporal process rates, and additional information derived from simultaneous measure-
ments demonstrated in Fig. 6 and formulae in Table 3. Bold values indicate the rates and changes in rate we sought to calculate. k is
the rate of temperature change.

Approach Fixed-site at 70 m Snapshot at 90 min Flow path from 0–100 m, 0–100 min

– At 25 min: Dkt 5
20.00027C/s

0–50 m: 20.0217C/m 0–25 m (min): l 5 20.000157C/s

50–65 m: 20.02587C/m 25–50 m (min): l 5 20.000357C/s

65–100 m: 20.01387C/m 50–100 m (min): l 5 20.000437C/s

Fixed-site – Confirmation that no change
in rate occurred during
snapshot

50 m: Dkx 5 20.00043 1
0.00035 5 20.000087C/s

Snapshot
– –

25 min: Dkt 5 20.000357C/s 1
0.000157C/s 5 20.00027C/s

50 m: Dkx 5 20.000437C/s 1
0.000357C/s 5 20.00008 7C/s

50–100 m, 0–25 min: l 5 20.01387C/m �
0.0167 m/s 5 20.000237C/s

Fixed-site and snapshot – – Confirmation that a temporal change in rate
did not coincide with spatial change in rate
along flow path after the snapshot
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other example of hybridizing measurement approaches (in-
terpreting data from 1 reference frame with a 2nd reference
frame) to derive process rates is nutrient-spiraling theory
(Webster and Patten 1979). We cite these examples as evi-
dence that limnologists already use multiple measurement
approaches to measure process rates, although they do so
by combining the underlying reference frames with analyt-
ical tools and assumptions instead of making simultaneous
measurements. We contend that simultaneous measure-
ments based on multiple approaches may alleviate many
of the assumptions and subsequent uncertainties involved
with existing process-rate measurement techniques.

In any aquatic environment and for any process rate, spa-
tial patterns exist that are caused by environmental hetero-
geneity, temporal patterns exist that are caused by cyclical
drivers (e.g., discharge, sunlight, temperature, population
cycles), and a convolution of both exists that is driven by
watermixing.With the increasing availability of more accu-
rate, precise, inexpensive, and miniaturized sensors, one is
tempted to imagine that limnologists may overcome cur-
rent technological limitations of environmental process-rate
measurement. However, new tools also require limnologists
to reconsider measurement approaches and how to analyze
thedataderived fromdifferentapproaches.Theoretical frame-
works and associated statistical processing must keep pace
with this increasing flow of data (see Reichert et al. 2009
and Hall et al. 2015 for examples of statistical and Bayesian
methods applied to ecosystem metabolism), lest the signals
we seek become obscured by variability created by a convo-
lution of poorly understood spatiotemporal patterns. Our
intention was to show that use of multiple measurement
approaches simultaneously provides a strategy for deriving
rates of environmental processes in situ, while enabling char-
acterization of overlapping spatiotemporal patterns in pro-
cess rates, and thus, how to make use of these new streams
of data.
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