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Abstract: Intermittent rivers are spatially dynamic, expanding and contracting in response to changes in water
availability, but studies that explicitly examine spatial drying patterns are scarce. We used long-term data produced
by citizen scientists to map wet and dry reaches of 3 different river systems to investigate mechanisms producing
temporal variation in drying patterns. We quantified the total wetted river length in each survey, and calculated
ecologically scaled landscape indices that indicate the carrying capacity (population size) and habitat connectivity
of large and small fish metapopulations in these systems. We found that the spatial extent of perennial water de-
creased over the study period in 2 of the 3 study rivers: ∼26% in the Agua Fria River from 2008 to 2016, and ∼14% in
Cienega Creek from 2006 to 2016. We also observed an ∼8% decline in habitat connectivity for large fish in the
Agua Fria River. We used multivariate structural equation models to infer causal relationships between spatial dry-
ing patterns and temperature, precipitation, streamflow, and drought conditions. These models explained 85% of
year-to-year variation in the total length of wet reaches, and 63 and 55% of year-to-year variation in habitat con-
nectivity for large and small fish, respectively. With the US Southwest shifting to an even more arid climate, our
results suggest that this may reduce habitat connectivity of fish populations in this region.
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Intermittent rivers (fluvial landforms that cease to flow at
some point in space or time) are globally widespread and
occur in all climates and terrestrial biomes. Despite com-
prising up to 50% of total river length and being equally
common as perennial (continuously flowing) rivers, inter-
mittent rivers are understudied relative to perennial rivers
(Nadeau and Rains 2007, Datry et al. 2014). Researchers are
beginning to understand that intermittent rivers are ecolog-
ically and hydrologically different from perennial systems,
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but considerable knowledge gaps remain (Boulton 2014,
Datry et al. 2014, Costigan et al. 2016). Moreover, intermit-
tent rivers are among the types of water bodies that aremost
likely to experience hydrological changes as a result of cli-
mate change (Dhungel et al. 2016). Yet, we have little un-
derstanding of how spatial drying patterns in intermittent
rivers vary over time, or how tightly this variation is linked
to concomitant changes in streamflow, drought severity,
temperature, or precipitation.
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At the landscape-scale stream networks exhibit expan-
sion and contraction cycles in response to variation in wa-
ter availability (hereafter ‘landscape drying patterns’; Stan-
ley et al. 1997, Datry et al. 2016). Under the driest conditions
only the perennial portions of intermittent streams are wet-
ted, and all intermittent reaches are dry. Hydrologic and geo-
morphologic properties, such as proximity of the stream chan-
nel to the water table, control which reaches dry in a given
river network (Konrad 2006, Larned et al. 2010, Goulsbra
et al. 2014), whereas regional climate and recent weather
history should control when and for how long intermittent
reaches dry (Costigan et al. 2016). Nevertheless, few studies
have investigated long-term drying patterns within intermit-
tent river systems, so in many cases we lack even a basic un-
derstanding of how much temporal variability in drying pat-
terns exists in intermittent rivers, much less what factors are
responsible for such temporal variation.

Changes in landscape drying patterns have strong im-
plications for habitat connectivity of aquatic taxa that re-
quire perennial water, such as fish. Dewatering of streams
in the Great Plains, US, has led to shifts in fish communi-
ties towards the dominance of benthic- vs pelagic-spawning
species in regions where zero-flow days and drying events
are more common (Perkin et al. 2014, Perkin et al. 2015).
Jaeger et al. (2014) found that increased drying events as
a result of projected climate change are likely to decrease
connectivity for native fish during spawning periods when
upstream migrations are common. Thus, changes in land-
scape drying patterns have strong implications for fish pop-
ulations, as some species may require long stretches of un-
fragmented river reaches to successfully reproduce.

Streamflow monitoring in intermittent rivers is difficult
because intermittent rivers are not as likely as perennial riv-
ers to have gages that continuously record water levels or
discharge (Costigan et al. 2016). Citizen science programs
that monitor the locations and extent of perennial water in
intermittent river systems (hereafter ‘wet/dry mapping’) can
provide long-term datasets to address basic questions about
temporal variation in landscape drying patterns. Turner and
Richter (2011) used 12 y of citizen science-collected wet/dry
mapping data in the San Pedro River, Arizona, USA, to show
that ∼32% of the river length surveyed had perennial water
across all years. Datry et al. (2016) analyzed 9 y of citizen
scientist-collected wet/dry mapping data from 5 river net-
works in Poitou–Charentes, France, and found that during
the driest portions of the year ∼20% of the network had pe-
rennial water. Thus, citizen scientists have already demon-
strated their potential to play important roles as primary
data collectors in studies that investigate long-term trends
of landscape drying patterns in intermittent rivers.

The southwestern US has experienced large droughts
overthepastseveraldecades.Analysesofweatherandstream-
flow data in this region have shown significant decreases in
precipitation (Prein et al. 2016) and increases in the fre-
quency of anomalous low-flow events (Ruhí et al. 2016).
Further, studies project that the spatial and temporal extent
of river drying will increase as a result of climate change
(Jaeger et al. 2014). We are aware of 3 different rivers in
Arizona with long-term citizen science wet/dry mapping
programs, and wanted to use these data to investigate how
yearly variation in weather, streamflow, and drought condi-
tions might influence landscape drying patterns. We hy-
pothesized that streamflow is a causal factor of spatial drying
patterns throughout a river, as it is the quantity of surface
water present in a river and is one of several first order con-
trols on what length of a river is dry versus wet; the other
factors being geomorphological and hydrologic (i.e., ground-
water inputs, depth of alluvium, and channel morphology;
Costigan et al. 2016). Increases in drought severity might
separately influence drying patterns by reducing the avail-
ability of groundwater inputs or increasing evapotranspi-
ration throughout the watershed. Further, we expect that
temporal variation in streamflow and drought severity is
caused by variation in weather (short-, medium-, and long-
term temperature and precipitation history).

Here we present the results of a study where we aimed
to: 1) describe landscape drying patterns in desert intermit-
tent rivers, 2) investigate temporal variation in these land-
scape drying patterns, and 3) test the hypothesis that tem-
poral variation in landscapedryingpatterns canbepredicted
by temperature, precipitation, and streamflow history, in
addition tometrics that describeoverall drought conditions.
To do so we compiled 3 long-term wet/dry mapping data-
sets produced by citizen science river monitoring programs
to describe landscape drying patterns, examine how they
have varied over time, and used structural equation models
to test causal hypothesis networks between spatial metrics
that quantify landscape drying patterns and temperature,
precipitation, streamflow, and drought metrics.
METHODS
Study rivers

The Agua Fria River, Cienega Creek, and the San Pedro
River in the Arizona, USA, have long-term wet/dry map-
ping data from yearly citizen science surveys (Fig. 1). These
rivers historically contain both intermittent and perennial
reaches, though the extent of perennial reaches in these riv-
ers is likely much greater in the past than at present (Turner
and Richter 2011). These rivers are unregulated and their
flow regimes are unmodified by dams in the portions stud-
ied, but they are subject to unknown amounts of ground-
water withdrawals in their watersheds. These rivers also
vary in physical and hydrological characteristics (Table 1),
and in geographic location, but they all drain into the Gila
River in the Lower Colorado River Basin. The San Pedro
River has the largest watershed area and the lowest water-
shed slope, Cienega Creek has the smallest watershed area,
and the Agua Fria River has the highest watershed slope.
The mean elevation in each watershed is similar, as are an-
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nual precipitation and temperature. However, theAgua Fria
receives nearly 2� the precipitation in the winter than Cie-
nega Creek and the San Pedro River, which receive nearly
50%more precipitation than theAgua Fria during theNorth
American Monsoon season in mid-to-late summer. This
leads to these rivers showing different seasonal hydrographs,
as the Agua Fria has peak flows driven by winter rains, the
San Pedro has peak flows driven by monsoon rains, while
Figure 1. Maps showing locations of the study rivers and watersheds (delineated from the most downstream surveyed reach) in
Arizona and reaches within each study river. Pentagons show locations of US Geological Survey gages used in our study (Agua Fria
River, 09512500; Cienega Creek, 09484600; San Pedro River, 09471000). Study periods for the study rivers: Agua Fria River, 2008 to
2016; Cienega Creek, 2006 to 2016; San Pedro River, 1999 to 2016. The reaches are color coded to show the number of wet years.
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Cienega Creek has peak flows more frequently in the mon-
soon but also experiences peak flows during the winter
(Figs S1–S3). Nevertheless, these rivers represent the var-
iation in size, physical characteristics, and hydrological re-
gime typical of unregulated intermittent rivers in the south-
western USA.
Survey methods
Trained citizen scientists conducted the wet/dry surveys

on each of these rivers. The Friends of the Agua Fria Na-
tional Monument organize the Agua Fria River surveying
effort (2008–present). The Nature Conservancy and the US
Bureau of Land Management organize the upper Cienega
Creek surveys (2006–present), and the Pima County Associ-
ation of Governments organize surveys of the lower reaches
of Cienega Creek (1999–present). The Nature Conservancy
and the US Bureau of Land Management organize surveys
on the San Pedro River (1999–present). Some of the San Pe-
dro River data (1999–2010) has been published (Turner
and Richter 2011). Here, we use the 1999 to 2016 data from
the San Pedro River, the 2008 to 2016 data from the Agua
Fria River, and the 2006 to 2016 data from Cienega Creek
(38 years of wet/dry mapping data across all 3 rivers).

Each river was surveyed using the same methods in the
middle of June. Water levels in June are typically at their
lowest as weather conditions are usually driest and warmest
just before the North American Monsoon rains begin (typ-
ically last week of June or 1st week of July). The Agua Fria
and the San Pedro Rivers were surveyed on the 3rd Saturday
of June each year. Cienega Creek was surveyed either the
week before or after the 3rd Saturday of June, because many
of the same citizen scientists conduct surveys on both the
San Pedro River and Cienega Creek. Surveyors used hand-
held global positioning system (GPS) units to record the be-
ginning and endpoint of all surface water (either standing
or flowing) reaches ≥9.1 m (30 ft) in length. Surveyors dis-
regarded anywet or dry gaps <9.1m to account for potential
geolocation errors inherent in handheld GPS units. Ignor-
ing these unsurveyed reaches could result in small, ecolog-
ically important stagnant pools being represented as dry, but
overall thismethod gives a robust, repeatable, and generaliz-
able understanding of large-scale drying patterns through-
out a given river at a given point in time.We used the begin-
ning and endpoint coordinates of each reach with surface
water and linearly referenced (‘snapped’) them to the clos-
est points on US Geological Survey National Hydrography
Dataset flow lines (http://nhd.usgs.gov) to generate maps
of wet and dry reaches of a river at a point in time.Weman-
ually corrected any errors in location caused by river mean-
ders. If there were gaps in the data between the most up-
and downstream surveyed reaches, we did not include the
unsurveyed reaches in our analysis. Reaches that had data
in some years but not others were treated as unsurveyed.

Landscape intermittency indices
We used the maps of wet and dry river reaches to cal-

culate a suite of spatial metrics to describe landscape river
drying patterns (hereafter collectively referred to as “land-
scape intermittency indices”). First, we calculated the total
length of wet river reaches from each survey, expressed as
a percent of the total river length surveyed. We then cal-
culated Ecologically Scaled Landscape Indices (ESLIs, Vos
et al. 2001) which have an advantage over traditional land-
scape metrics by explicitly accounting for ecological pro-
cesses underlyingmetapopulation persistence (local extinc-
tion and regional dispersal), thus giving a more accurate
interpretation of how landscape structure and organism traits
influence metapopulation dynamics. Datry et al. (2016) re-
cently developed ESLIs tailored for intermittent river sys-
tems, and we follow their approach here. We focused on
2 different ESLIs, one that describes the average patch car-
rying capacity, ESLIK, and another that describes the aver-
age patch connectivity, ESLIC. ESLIK is based on the inverse
relationship between the likelihood of a population becom-
ing extinct and its size, where the population size present in
a given patch i is the area of that patch, Ai, multiplied by the
population density of the species, N. Thus, ESLIK is the av-
erage population size per patch, calculated across the total
number of patches, n:

ESLIK 5 o
n

i51
N � Ai

n
: (Eq. 1)

ESLIC represents the connectivity between individuals re-
siding in isolated wet reaches if all dry reaches were to be-
Table 1. Summary of physical and hydrological characteristics of the study rivers. Watershed area was calculated from the most
downstream surveyed point. Discharge data were obtained from US Geological Survey gaging stations in or near the surveyed reaches
(Agua Fria River [AFR], 09512500; Cienega Creek [CC], 09484600; San Pedro River [SPR], 09471000). Precipitation (precip) and air
temperature (temp) data were derived from PRISM gridded climate data, and elevation and slope data were derived from digital
elevation maps (30-m resolution) of the watersheds.

River
Surveyed

length (km)
Watershed
area (km2)

Mean discharge
(m3/s)

Annual, monsoon,
and winter precip. (mm)

Mean
temp. (7C)

Mean
elevation (m)

Slope
(%)

AFR 31.11 2124 0.573 389.4, 153.4, 147.3 15.15 1420.9 10.49

CC 32.74 1179 0.147 364.5, 220.9, 72.2 16.88 1407.6 8.36

SPR 76.49 4951 0.895 362.3, 225.8, 61.9 16.78 1476.6 5.29



248 | Citizen scientists document streamflow declines D. C. Allen et al.
come immediately rewetted, but it depends on the number
of individuals in a given patch and their dispersal ability.
Here, an uncolonized wet patch i can only be colonized from
an occupied patch j, and the probability of successful colo-
nization in patch i increases with the number of colonists
that reach it from occupied patch j. The number of colonists
from patch j that reach patch i depends on the number of
individuals in patch j available for colonization, which is a
function of the area of patch j, Aj, and the distance between
the 2 patches, dij. A dispersal kernel describes successful dis-
persal between patches i and j, which is parameterized by
the average dispersal distance, D, of the species of interest.
Assuming that a constant fraction of a population are emi-
grants, the connectivity of patch i, Ci, is given by:

Ci 5 o
n

j51
Aj � e 2D�dijð Þ  for  i ≠ j, (Eq. 2)

and ESLIC is then given by:

ESLIC 5 o
n

i51

Ci

n
: (Eq. 3)

We obtained fish species presence data in these rivers
from species distribution maps and locality information pro-
vided by the Arizona Fish and Game Department Fish Data-
base, which is a compilation of fish locality records docu-
mented from current and historical fish surveys (Table S1).
We obtained maximum fish lengths for each species from
the fish traits database (www.fishtraits.info). We calculated
ESLIC and ESLIK for both small (∼6 cm in length) and large
native fish (∼30 cm in length) common in these rivers fol-
lowing methods from Datry et al. (2016). These species in-
clude 2 US federally endangered fish: the Gila Topminnow
(Poeciliopsis occidentalis) that is ∼6 cm in length, and the
Gila Chub (Gila intermedia) that is ∼22 cm in length. The
largest native fish in these rivers, the Sonoran Sucker (Cato-
stomus insignis) is ∼80 cm in length, but only occurs in the
San Pedro River. Historically, the San Pedro River also sup-
ported 2 much larger native fish and 11 small native fish
(Minckley and Marsh 2009). The fish survey data in the Ar-
izona Fish and Game Department Fish Database were not
quantitative estimates of fish density, and instead were qual-
itative catch-per-unit-effort (CPUE) data. Accordingly, we
followed Datry et al. (2016) in using the inverse of home-
range size as a surrogate measure for density, where home-
range size is estimated from allometric relationships between
body size and home-range size and dispersal distance, based
on equations inMinns (1995) and Radinger andWolter (2014),
respectively.

Temperature, precipitation, and drought indices
We obtained weather and streamflow data during the

surveyed years for the 3 study rivers.We first delineatedwa-
tersheds upstream of the most downstream surveyed reach.
We calculated the monthly mean air temperature and pre-
cipitation from the years surveyed for each watershed from
theParameter-elevationRelationships on Independent Slopes
Model (PRISM), which interpolates observed weather data
collected throughout the conterminous US (Daly et al. 2008).
We used these data to calculate the cumulative precipitation
3, 6, and 12moprior to each yearly survey and during the pre-
viousmonsoon(July–August)andwinter (December–March)
rains. We also calculated the mean temperature 3, 6, and
12 mo prior to each survey.

We obtained drought index data from the US National
Oceanic and Atmospheric Administration (NOAA) North
American Drought Monitor (https://www.ncdc.noaa.gov
/climate-monitoring/), and calculated the average Palmer
Modified Drought Index (PMDI), Palmer Hydrological
Drought Index (PHDI),andPalmerZDrought Index (ZNDX)
values for the month of each survey, and for the 3-, 6-, and
12-mo periods prior to each survey. These drought indices
are calculated from meteorological data and other param-
eters related to soil and vegetation, but they differ in their
meaning and interpretation. PMDI assesses the severity of
dry or wet periods. PHDI is indicative of long-term changes
in moisture supply and thus, measures drought on a longer
time span than PMDI. ZNDX is indicative of short-term
changes in precipitation relative to normal levels, and mea-
sures drought on a shorter time span than PMDI. ZNDX
can, therefore, indicate a brief period of abnormal wetness
during an extended drought that would not be captured by
PMDI and ZNDX. For all of these indices, values between
21.5 and 1.5 indicate normal conditions; values between
21.5 and23 or 1.5 and 3 indicatemild-to-moderate drought
or wetness; values between 23 and 24 or 3 and 4 indicate
severe drought or wetness; and values <–4 or >4 indicate
extreme drought or wetness.Wewere unsure which drought
index would be the best predictor and which amount of
time prior to the wet/dry mapping would be most useful
in predicting landscape intermittency indices, so we gen-
erated this suite of variables to use as potential predictors
in our data analyses that we describe below. We obtained
dailymean discharge data fromUSGS gaging stations (Agua
Fria River, 09512500; Cienega Creek, 09484600; San Pedro
River, 09471000) during the years surveyed. We then used
these data to calculate the following streamflow indices fol-
lowing Richter et al. (1996): 1-, 3-, 7-, 30-, and 90-d mini-
mum discharges, overall mean discharge, and the base flow
index (7-d minimum flow/mean flow) observed during the
180- and 365-d periods prior to each survey.
Data analyses
First, we tested for changes in landscape intermittency

indices (wet length and ESLIs) over time using univariate
general linear mixed-effects models, where a given land-
scape intermittency index was the response variable, year
was a fixed predictor variable, andwe used river as a random
effect on the intercept to account for between river varia-



Volume 38 June 2019 | 249
tion. We used a Gaussian error structure and examined re-
sidual errors of each model to confirm that they were nor-
mally distributed. We also used simple linear regressions to
analyze data from each river individually to investigate rela-
tionships between landscape intermittency indices and year
in each river.

We used structural equation modeling to investigate how
weather and streamflow history might explain year-to-year
variation in landscape intermittency metrics (Grace 2006).
We generated specific hypotheses as graphical networks of
interaction paths (Fig. 2) about how relationships between
temperature, precipitation, drought, and streamflow might
influence landscapedryingpatterns, andwe thenused struc-
tural equationmodels to analyze them as a set of linked equa-
tions. We had many potential variables that could represent
each predictor (3 temperature, 5 precipitation, 20 stream-
flow, and 6 drought variables), but we wanted to generate
a reasonable number of candidate models to evaluate each
of landscape intermittency index. To determine the best set
of starting variables to include in the preliminary structural
equation models, we ran a series of AICc model selection
analyses with these variables (Burnham and Anderson 2002).
Figure 2. Summary of structural equation models. Schematic representation of hypothesized relationships between variables
included in preliminary structural equation models (A). Here, temperature and precipitation variables are exogenous (not caused by
other variables in the network) and have casual effects on streamflow and drought metrics, which have casual effects on intermittency
metrics (streamflow, drought, and intermittency metrics are endogenous, being caused by other variables in the network). Final struc-
tural equation models (B–F) for each landscape intermittency index show standardized path coefficients next to each path, path/
arrow size is proportional to path coefficient magnitude, and paths are statistically significant ( p < 0.05) unless denoted by ‘ns’.
Double-headed arrows indicate correlated errors between variables rather than a causal path. Gray boxes/arrows indicate variables and
paths present in the preliminary model that were not present in the final model, and dashed boxes/arrows indicate variables present in
the final model that were not present in the preliminary model. Summary of model fit analyses for structural equation models (higher
p-values indicate better fit): Fisher’s C 5 5.81, df 5 8, p 5 0.669 (B); Fisher’s C 5 2.15, df 5 14, p 5 1.000 (C); Fisher’s C 5 2.15,
df 5 14, p 5 1.000 (D); Fisher’s C 5 4.61, df 5 12, p 5 0.970 (E); Fisher’s C 5 8.07, df 5 6, p 5 0.622 (F). Abbreviations: d 5 day,
mos 5 months, temp 5 temperature, ppt 5 precipitation, and Q 5 discharge.
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We compared all possible univariate andmultivariate mod-
els in sets of comparisons in a stepwise manner to identify:
1) the streamflow and drought variables that best predicted
each intermittencymetric, and2) the temperatureandprecip-
itation variables that best predicted streamflow and drought
variables.Weassessed thebestperformingmodels formulti-
collinearity and did not consider models with a variance in-
flation factor>10.We thenused general linearmixed-effects
models to construct preliminary structural equationmodels
for each intermittency metric in a piecewise manner, using
river as a random effect on the intercept in each model.

After developing the preliminary structural equation
model, we allowed all variables (even those not included in
the preliminary model) to be explored as ways to improve
overallmodelfit basedonmodelmodification indices.When
we added variables that were likely to be correlated (e.g.,
2 temperature variables, etc.) to the model, we also added
their covariance to the model. Once we achieved the best
possible model fit, we explored if pruning paths with insig-
nificant path coefficients would further improve model fit,
dropping those with the smallest standardized path coeffi-
cientsfirst.We restricted ourfinal structural equationmod-
els to amaximumof 7 paths (to generate structural equation
models with ≥5 data points per path, Grace 2006), pruning
models as necessary. Finally, we evaluated the ability of the
final structural equation model to predict the landscape in-
termittency indices by assessing the marginal (fixed-effects
only) and conditional (fixed-effects plus random effect) R2

values (following Nakagawa and Schielzeth 2013).
All statistical analyses were run with R software (ver-

sion 3.3.3; available from: www.r-project.org). General lin-
ear mixed models were run with the lme4 and lmerTest
packages, versions 1.1–13 and 2.0–33, respectively. AICc
model selection analyses were run with the MuMIn pack-
age, version 1.15.6. Structural equation models were run
with the piecewiseSEM package, version 1.2.1. Data and code
files for this project are open-access at the Open Science
Framework (available from: https://doi.org/10.17605/OSF
.IO/A7VCE; Allen et al. 2018).
RESULTS
Temporal variation in landscape drying patterns

The San Pedro River had a greater length of wet reaches
than the other rivers, as well as the highest ESLIK and ESLIC
values for both large and small fish (Table 2). The Agua Fria
River, however, tended to show the greatest raw magnitude
of temporal variation with the greatest ranges of these met-
rics. We observed the greatest coefficient of variation for
ESLIK for large fish and the smallest coefficient of variation
for ESLIC for large fish. General linear mixed-effects mod-
els indicated no change over time in the wet length of sur-
veyed reaches or in any of the ESLIs we calculated when all
rivers were included in the models. However, we observed
changes over time in at least one river when we analyzed
data from each river individually for 3 of these variables
(Fig. 3, Table 3). We observed significant declines in total
wet length in both the Agua Fria River, which declined by
∼26% from 2008 to 2016, and in Cienega Creek, which de-
clined by ∼14% from 2006 to 2019 (Fig. 3A). There was an
∼8% decline in ESLIC for large fish in the Agua Fria River
(Fig. 3C), and an ∼15% increase in ESLIC for small fish in
the San Pedro River (Fig. 3E). ESLIK did not change over
time for either small or large fishes. Throughout our study,
the focal rivers had annual drought index values (PMDI,
PHDI, ZNDX) in the normal (21.5 to 1.5) tomild/moderate
(21.5 to23.0) drought range (Table 4). However, drought
index values during themonth of the surveys weremore ex-
treme, and had values in the mild/moderate, extreme (23
to24), or severe (less than24) drought ranges for 6 of the
9 study years for the Agua Fria River, 9 of the 11 study years
for Cienega Creek, and 14 of the 18 years in the San Pedro
River.
Mechanisms producing landscape drying patterns
We used an iterative model development process to

make structural equation models for each landscape inter-
mittency index and used these models to develop a causal
hypothesis network to determine which mechanisms pro-
Table 2. Summary of landscape intermittency variables of the study rivers over time. Values for wet length (%), ESLIK large fish, ESLIK
small fish, ESLIC large fish, and ESLIC small fish are means. Values in parentheses are standard deviations (SDs) and ranges (max–
min), respectively, for each river. ‘Total’ represents the total values pooled across all 3 rivers, and here we list SDs and coefficients of
variation in parentheses, respectively. ESLIK and ESLIC are ecologically scaled landscape indices representative of carrying capacity
and connectivity, respectively. Values are log-transformed and were calculated for a small fish (6 cm in body length) and a large fish
(22 cm) based on fish species present in these systems. Some raw ESLIK large fish values were negative, so we transformed these data
by adding the absolute value of the minimum observed value for all data within each river to generate coefficients of variation that
were comparable with other variables in other rivers.

River Years surveyed Wet length (%) ESLIK large fish ESLIK small fish ESLIC large fish ESLIC small fish

Agua Fria River 9 35.8 (11.3, 32.9) 0.59 (0.50, 1.37) 2.22 (0.50, 1.37) 7.63 (0.33, 0.89) 5.76 (0.61, 1.89)

Cienega Creek 11 32.2 (6.4, 20.6) 0.45 (0.22, 0.62) 2.17 (0.22, 0.62) 7.34 (0.25, 0.74) 5.29 (0.51, 0.80)

San Pedro River 18 55.0 (8.4, 7.8) 0.95 (0.33, 0.30) 2.89 (0.33, 0.29) 8.44 (0.39, 0.81) 6.27 (0.54, 0.64)

Total 12.33 41.0 (8.7, 0.22) 0.66 (0.35, 0.56) 2.42 (0.35, 0.15) 7.80 (0.32, 0.04) 5.77 (0.55, 0.10)
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duce drying patterns. The final version of each structural
equationmodel fit the datawell enough towarrant interpre-
tation (wet length: Fisher’s C 5 5.81, df 5 8, p 5 0.669;
ESLIK small fish: Fisher’s C 5 2.15, df 5 14, p 5 1.000;
ESLIK large fish: Fisher’s C5 2.15, df5 14, p5 1.000; ESLIC
small fish: Fisher’s C5 4.61, df5 12, p5 0.970; ESLIC large
fish: Fisher’s C 5 8.07, df 5 6, p 5 0.622).

Our final structural equationmodel indicated significant
linkages between precipitation and the total wet length of
surveyed reaches, mediated through effects on low stream-
flow and drought severity, and explained a large amount of
variation in wet length (marginal-R2 5 0.79, conditional-
R2 5 0.85, Fig. 2B). This model had a negative effect of
previous monsoon precipitation (standardized path coeffi-
cient 5 20.23) and a positive effect of precipitation over
the previous year (0.27) on the 90-dminimumdischarge ob-
served in the previous 180 d. Further, precipitation over the
previous year was positively related (0.34) to the mean
Palmer Hydrological Drought Index (PHDI) over the pre-
vious year. In the next level of this model, both the 90-d
minimum discharge and themean PHDI were positively re-
lated (0.94 and 0.21, respectively) to the wet length of sur-
veyed reaches.
Our final structural equation models did not show clear
linkages between temperature, precipitation, drought met-
rics, and the ESLIK of either small or large fish (Fig. 2C–D).
The models for large and small fish were nearly identical.
They showedno significant path betweenPalmerZDrought
Index (ZNDX) and 3-d min discharge on ELSIK (despite a
large-magnitude path coefficient of 0.82), even though they
showed significant effects of temperature and precipitation
on the PZDI over the previous year and the 3-d min dis-
charge over the previous 180 d.

Finally, our structural equation models for ESLIC of
small and large fish produced models with different inter-
pretations. For connectivity of small fish, our structural
equation model demonstrated linkages between tempera-
ture, precipitation, drought, and ESLIC, but not streamflow
(marginal-R2 5 0.55, conditional-R2 5 0.55, Fig. 2E). Tem-
perature over the previous 3- and 12-mo period had neg-
ative effects (20.58 and 20.63) on the Palmer Modified
Drought Index over the previous 6 mo, whereas precipita-
tion appeared to caused PMDI to increase (0.42). PMDI
then had a positive effect on ESLIC (0.38). For connectivity
of large fish, however, our structural equationmodel showed
significant linkages between precipitation, streamflow, and
ESLIC, but not drought and temperature (marginal-R2 5
0.31, conditional-R2 5 0.63, Fig. 2F). Precipitation over the
previous 12 mo had a positive effect on the 90-minimum
discharge over the previous year (0.29), which then had a
positive effect on ESLIC (0.66).
DISCUSSION
Temporal variation in landscape drying patterns

Here we present one of the first long-term datasets of
landscape drying patterns inmultiple intermittent river sys-
tems, andwe show that spatial and temporal drying patterns
can vary greatly among rivers in the same region. For ex-
ample, ∼33% of the surveyed reaches were wet in the Agua
Fria River and Cienega Creek across the 9 and 11 y of sur-
veys there, respectively, whereas the San Pedro River aver-
aged >50% of wet reaches surveyed in the almost 18 y of sur-
veys there. We caution that the areas chosen for surveying
in each river were designed to include wet reaches due to
interest in monitoring their length over time, so these esti-
mates are influenced by the survey design and may not rep-
resent the entirety of each river system. The wet length of
the San Pedro was the least variable over time, and both the
Agua Fria River and Cienega Creek showed much greater
variation in wet length over the study period. The ESLI indi-
ces we generated for each river mirrored these patterns,
with the Agua Fria River showing the greatest range of ESLI
values and the San Pedro River showing a greater magni-
tude of ESLI values. These results support the ideas pre-
sented by Datry et al. (2016), that intermittent rivers can
be viewed as dynamicmosaics of wet and dry habitats, char-
acterized by strong spatial patterning and heterogeneity.
Figure 3. Summary of temporal trends in wet length of sur-
veyed reaches (%, panel A), and ESLIC and ESLIK calculated for
small and large fish species (6 and 30 cm, respectively; panels
B–E). Solid lines in panels A, B, D, and E represent statistically
significant (p < 0.05) linear regressions analyzed separately for
each river (black 5 Agua Fria River, gray 5 Cienega Creek, light
grey 5 San Pedro River).
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With respect to the individual systems we studied, however,
we note that our results are for the entire river andmay thus
mask patterns occurring in individual river reaches. For ex-
ample, previous analyses at finer spatial scales within the
San Pedro River show that certain reaches in the river are
very dynamic, with very high year-to-year variation in being
wet or dry (Turner and Richter 2011, Lacher et al. 2014).
Long-term trends in landscape drying patterns
Of the 3 rivers where citizen scientists documented the

extent of perennial water in Arizona, 2 experienced declines
in perennial reach length over our study period. While we
did notfind a significant trendwhenwe combined data from
all 3 rivers together, we did find that interannual variation
was important when we investigated each river individu-
Table 3. Summary of general linear mixed models (GLMMs) investigating temporal trends in drying patterns across all rivers (with
year as fixed effect and river as a random effect) and simple linear regressions (LRs) investigating temporal trends in drying patterns
in each of the 3 rivers individually. For GLMMs, we use the Satterthwaite approximation for degrees of freedom (df ) in calculating
the F-statistic and p-value. For GLMMs we report both the marginal-R2 (fixed effect only, listed 1st) and the conditional-R2 (fixed
effect plus random effect, listed 2nd). For statistically significant models (p < 0.05, in bold font), we report the equation (y 5 response
variable, x 5 year), and the 95% confidence interval for the b in the GLMM.

Response variable River(s) Model type Fdf1, df2 p R2 Equation 95% CI for b

Wet length (%) All rivers GLMM 3.261,34.6 0.080 0.039, 0.634

Agua Fria River LR 6.911,7 0.034 0.496 y 5 22.91x 1 5892.24 (25.53, 20.29)

Cienega Creek LR 6.651,9 0.030 0.425 y 5 21.25x 1 2541.65 (22.34, 20.15)

San Pedro River LR 0.061,16 0.802 0.004

ESLIK, Large Fish All rivers GLMM 1.841,34.9 0.184 0.029, 0.524

Agua Fria River LR 4.991,7 0.061 0.417

Cienega Creek LR 0.221,9 0.652 0.024

San Pedro River LR 0.101,16 0.756 0.006

ESLIC, Large Fish All rivers GLMM 3.761,34.47 0.061 0.035, 0.717

Agua Fria River LR 6.471,7 0.039 0.480 y 5 20.08x 1 173.26 (20.159, 20.006)

Cienega Creek LR 3.661,9 0.088 0.289

San Pedro River LR 0.481,16 0.498 0.029

ESLIK, Small Fish All rivers GLMM 1.841,34.9 0.184 0.029, 0.524

Agua Fria River LR 5.001,7 0.060 0.417

Cienega Creek LR 0.221,9 0.652 0.024

San Pedro River LR 0.101,16 0.756 0.006

ESLIC, Small Fish All rivers GLMM 0.561,35.1 0.456 0.010, 0.464

Agua Fria River LR 3.881,7 0.090 0.357

Cienega Creek LR 0.721,9 0.420 0.074

San Pedro River LR 0.051,16 0.028 0.265 y 5 0.05x 2 98.16 (0.006, 0.098)
Table 4. Summary of meteorological variables and drought index values for the study period of each river. For each variable we report
the mean value for the 12-mo period prior to the survey, followed by the minimum and maximum annual value in parentheses.

River
Annual Air
Temp. (7C)

Annual
Precip. (mm)

Annual Palmer Modified
Drought Index

(PMDI)

Annual Palmer
Hydrological Drought

Index (PHDI)

Annual Palmer Z
Drought Index

(ZNDX)

Agua Fria 15.3 381 21.71 21.90 20.63

(14.5, 15.7) (282, 521) (23.00, 20.494) (23.39, 20.43) (21.28, 0.05)

Cienega Creek 17.0 354 21.88 22.21 20.77

(16.4, 17.6) (241, 496) (23.28, 20.39) (23.45, 20.83) (21.75, 0.25)

San Pedro River 16.9 368 21.71 21.94 20.69

(16.0, 17.5) (234, 615) (23.31, 0.35) (23.50, 0.63) (21.75, 0.92)
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ally. The percentage of wet reaches declined by ∼26% in the
Agua Fria River and∼14% inCienegaCreek, since surveying
began in those rivers (2008 and 2006, respectively). We also
observed declines in ESLIC for large fish in the Agua Fria
River, which indicates that habitat connectivity for larger
fish is being degraded in this river. Other studies have found
that extreme low-flow events in southwestern US rivers fa-
vor the dominance of nonnative fish over native fish (Ruhí
et al. 2015, 2016), which suggests that native fish species in
the Agua Fria River, particularly larger ones, may be threat-
ened because of declining perennial habitat. We did not find
any significant change in the overall extent of perennial river
length in the San Pedro River over the past 18 y, echoing
results from analysis of the first 12 y of these data (Turner
and Richter 2011). Further, we observed a 15% increase in
habitat connectivity for small fish (ESLIC calculated for fish
of 6 cm in body length) over time, though the small feder-
ally endangered Gila topminnow that historically occurred
in this river may have been extirpated due to the intro-
duction of nonnative vertebrates now present in the river
(bluegill [Lepomis macrochirus], largemouth bass [Micro-
pterus salmoides], mosquitofish [Gambusia affinis], and the
American bullfrog [Lithobates catesbeianus]). Finally, we
did not observe any significant temporal trends in changes
in habitat carrying capacity (ESLIK) for large or small fish.
This may be because we estimated fish density with allo-
metric relationships with fish body size, as quantitative fish
density data to use in the calculation of this metric was not
available.

There are several different mechanisms that may explain
the different patterns we observed among our study rivers.
The first is related to differences in groundwater and water
management within each basin. Base flows in the San Pedro
River are supported by groundwater, and between 2002 and
2012 a combination of water conservation, reuse, recharge,
and augmentation projects in the Sierra Vista subwatershed
of the Upper San Pedro river (implemented by the Upper
San Pedro Partnership and its member agencies) have re-
duced groundwater consumption by about 6.3 million m3/y
(Gungle et al. 2016). Our results in this study indicate that
this program may have helped the San Pedro River avoid
the decline in perennial stream length we observed in the
other 2 rivers. However, a groundwater use deficit remains
in the watershed (Gungle et al. 2016). Population growth
and human demand for water has increased in the region
over the past 18 y, and hydrologicmodels indicate decreases
in perennial reach length are highly likely if this deficit is
maintained or grows in the future (Brand et al. 2010). Con-
versely, other modeling studies indicate that if groundwater
recharge is increased, then base flows in the San Pedro River
could be maintained until the year 2100 even if groundwa-
ter use increases in the watershed (Lacher et al. 2014, Rich-
ter et al. 2014). The San Pedro River is of critical conserva-
tion value because of the importance of its riparian areas as
a birdmigration pathway (Brand et al. 2011), which was one
impetus for the groundwater management plans that were
implemented in the watershed.

The lack of a coordinated effort to recharge groundwater
in the Agua Fria River and Cienega Creek watersheds may
explainwhyweobserveddeclines in perennial stream length
in these rivers over the past decade. However, we were un-
able to test this hypothesis specifically because we did not
quantifyhumanwateruse in thesewatershedsoverourstudy
period. We are not aware of any direct surface water with-
drawals from these rivers, but groundwater pumping does
occur in all watersheds for agricultural, municipal, and other
uses. Unfortunately, groundwater consumption is not ac-
curately monitored in Arizona. Many wells do not require
withdrawals to be reported, and many of those that do only
require self-reporting that is rarely verified. Accurate data
on groundwater use in our study watersheds are, therefore,
largely unavailable. However, remote sensing studies have
detected large declines in groundwater throughout the Col-
orado River Basin from 2004 to 2013, a period of sustained
drought (Castle et al. 2014). Thus, increased human use of
groundwater to compensate for reduced precipitation or
surface water drought periods could have contributed to our
results.

A 2nd explanation for the differences among our study
rivers is that climatic and physical differences among the
watersheds created the observed differences in the spatial
drying patterns. The San Pedro River watershed receives
more summer precipitation than either the Cienega Creek
watershed, which is influenced by both summer and winter
precipitation, or the Agua Fria watershed, which primar-
ily receives winter precipitation. The drought data pre-
sented in this study indicate that the San Pedro river experi-
enced less extreme drought over the course of our study
relative to the other 2 rivers (mean PMDI value was 21.50
for the San Pedro River, 22.1 for Cienega Creek, and 21.7
for the Agua Fria River). Hydrologic and physiographic
differences also exist between these rivers, which could in-
fluence how drying patterns vary over time. The San Pe-
dro is the largest of these 3 rivers, with a watershed area
2� that of Agua Fria River and 4� that of Cienega Creek.
Large watersheds should have relatively less variation in
discharge over time than small watersheds (Gordon et al.
2004), as smaller basins are more susceptible to being in-
fluenced by the small-scale high-intensity rainfall events
typical of the summer monsoon rains in the Sonoran Des-
ert (Fisher et al. 1982). Additionally, aquifer recharge dy-
namics also differ between these rivers, which could explain
some of the patterns we found. Studies of water chemistry,
including water isotope analyses, may be able to tease apart
some of these dynamics in the future. We are just begin-
ning to address questions about what factors influence spa-
tiotemporal drying patterns in intermittent river systems
(Costigan et al. 2016), and long-term wet/dry mapping proj-
ects such as those presented here are well-suited to inform
such research.
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Streamflow and drought as causal agents
of landscape drying patterns

Here, we also show that yearly variation in landscape in-
termittency indices can be a direct result of temporal vari-
ation in surface flow and drought conditions. We hypothe-
sized that temperature and precipitation would influence
intermittency indices throughmediating effects on stream-
flow and drought. Our structural equation models broadly
supported this hypothesis, even though we observed differ-
ences when comparing our final structural equation mod-
els for the different intermittency indices we investigated.
We found clear linkages between wetted river length and
precipitation mediated through effects on low streamflow
and drought. Streamflow was the most important factor
that caused variation in the amount of wetted river length,
but long-term hydrologic drought was also important. In-
terestingly, this model had 2 precipitation variables in it
with opposing effects on minimum discharge, negative ef-
fects of precipitation from the previous monsoon season
coupled with a positive effect of precipitation from the pre-
vious 12 mo. These opposing effects could indicate that
quantity of more recent precipitation (in the fall, winter, and
spring) is a more important determinant of base flows in
these rivers.

The results of this study are consistent with other stud-
ies showing increases in the prevalence and duration of
droughts in the southwestern US, and decreases in stream-
flow, in past decades. Prein et al. (2016) conducted a weather
type analysis across the conterminous US from 1979 to
2014, and found that changes in weather type frequency in
the southwestern US led to decreases in precipitation of up
to 25%. In an analysis of streamflow data from 120 stream
gages across the Colorado and Rio Grande Rivers in the
southwesternUS,Ruhíetal. (2016) foundthat themagnitude
of anomalous low-flow events increased between 1938 and
2012. These results are important within the context of cli-
mate change, leading some authors to argue that the arid
southwestern US climate has already become drier as pre-
dicted by many climate change models (Prein et al. 2016).

Other studies have suggested that a shift towards a drier
climate resulting from global climate change will have im-
plications for habitat connectivity for fish in intermittent
river systems in the southwestern US. In an analysis of the
Verde River, Arizona, Jaeger et al. (2014) used hydrologic
models to show that stream drying events are projected to
increasewith climate change, inways that will decrease hab-
itat connectivity during spring spawning seasons. Our re-
sults complement these studies, showing that in 2 of our
study rivers perennial reach length is declining over time,
reducing habitat connectivity for fish in one of these riv-
ers. These effects can be attributed to effects of stream-
flow and drought caused by decreased precipitation and
increased temperatures. Our final structural equationmod-
els on habitat connectivity differed depending on whether
they were calculated for small or large fish. For small fish,
temporal variation in habitat connectivity was caused by
droughts, whichwere caused by lower precipitation coupled
with higher temperatures. For large fish, however, temporal
variation in habitat connectivity was caused by variation
in streamflow, which was primarily influenced by precipita-
tion. These differences may be related by the differences in
home-range size, abundance, and dispersal ability of large
versus small fish used to calculate this metric (Datry et al.
2016). In general, smaller fish are more abundant but do
not disperse as far, whereas large fish are less abundant but
have larger home ranges and dispersal abilities. Thus, larger
fish may rely on large perennial areas being present that are
further apart but rarer, whereas a landscape with perennial
habitats that are small but close together may still result in
high connectivity for a smaller fish species. Nevertheless, we
found no significant relationship between streamflow and
drought for the average patch carrying capacity for large or
small fish. This metric represents the average carrying ca-
pacity of a given patch rather than the total carrying capacity
across all patches (Datry et al. 2016), so it may be unaffected
by variation in streamflow or drought if the average area of
wet patches is unaffected.
Role of citizen science in this project
This study relied on data collected by citizen scientists.

Wet/dry mapping data collected by citizen scientists of the
San Pedro River has been published on its own previously
(Turner and Richter 2011). These data have also been used
in other studies to project the effects of groundwater re-
charge on future San Pedro River streamflow in hydrolog-
ical models (Lacher et al. 2014), and in studies of riparian
plant and animal ecology conducted along the San Pedro
River (Stromberg et al. 2006, Allen et al. 2014). Moreover,
data from another citizen science driven wet/dry mapping
program in Europe have been used to study intermittent
river ecology (Datry et al. 2016). Thus, these wet/dry map-
ping programs are part of a growing trend of relying on cit-
izen scientists to collect freshwater monitoring data (Cla-
vero et al. 2017, Lévesque et al. 2017, Vincent et al. 2017).
We used citizen science data in our study to find that land-
scape intermittency indices produced by wet/dry mapping
data can be predicted by streamflow metrics derived from
discharge data collected on the same river. Thus, once a
long-term monitoring project is established and relation-
ships developed between wet/dry mapping and streamflow
data, research efforts could be lessened and distributed to
other rivers.

The data collected by citizen scientists that we present
here is considerable and of high quality, leading us to be-
lieve that there is potential for citizen scientists to play a
crucial role in intermittent streamflowmonitoring. Stream-
flow data of any type (e.g., discharge, water presence/ab-
sence) are notoriously difficult to collect in intermittent
river systems. Intermittent rivers are not as well represented
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as perennial systems in stream gage networks, but even if a
stream is gaged important aspects of an intermittent flow
regime (i.e., stagnant water vs dry river bed) may not be
measured (Costigan et al. 2016). Here we show that citizen
scientists can produce reliable data on water presence/ab-
sence through wet/dry mapping.We think citizen scientists
could also be trained to collect additional information on
the wetness of sediments in dry river channels, the presence/
absence of fish or tadpoles, or other features of interest. Fi-
nally, we note that the specific monitoring methods used
should be tailored for the particular drying patterns of each
system. In some intermittent systems there are small, iso-
lated, and permanent pools that may be ecologically im-
portant as refugia (Bogan et al. 2015), but our method of
only counting wet/dry stretches >9.1 m could miss these
localities.
Conclusions
We found that data collected by citizen scientists shows

the extent of perennial river length has decreased in 2 of the
3 rivers in Arizona that have wet/dry mapping programs,
but many more intermittent river systems in the south-
western US provide critical habitats for plants, birds, fish,
and insects, all of which are influenced by the presence or
absence of water (Merritt and Bateman 2012, Bogan et al.
2013, Bateman et al. 2014, Jaeger et al. 2014). Here, we
showed that citizen science programs focused on mapping
wet and dry sections of rivers and streams are valuable, and
suggest that these citizen science programs should be ex-
panded to currently unmonitored intermittent river sys-
tems of interest. New technologies, such as citizen science-
oriented smartphone applications, are being developed that
could improve current efforts and aid in integrating data
collected by different programs. If such programs were ex-
panded across the USA, we could study how the relation-
ship between streamflow, drought, and spatiotemporal river
drying patterns might vary under different climates and
under different intensities of human water use. Answers to
these questions would provide valuable information about
how to best manage our water resources under a changing
climate.
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