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Abstract: Streammetabolism is an important metric of ecosystem function. Accurate estimates of gross primary pro-
duction (GPP) and respiration (ER) are based on metabolismmodels that require estimates of gas transfer rates at the
surface–water interface. When the gas exchange rate K (d21) is measured directly from the environment, it can be
used with dissolved O2 data to estimate GPP and ER. However, inverse modeling methods can also be used to solve
for GPP, ER, andK simultaneously. Estimates ofK from inverse models have rarely been compared to direct estimates
of K. Additionally, the effects of the method used to estimate K on estimates of ecosystem metabolism are unknown.
We compared these methods in shallow, low-gradient, open-canopy experimental streams under a range of hydro-
logic conditions with (vegetated) and without (unvegetated) instream vegetation. The different methods gave similar
results for K estimates in vegetated streams. In unvegetated streams, however, inverse modeling methods that simul-
taneously estimated K with GPP and ER gave higher K estimates than did our direct measurements. When K was
modeled rather than measured, metabolism estimates were higher in unvegetated streams, and model fits struggled
to replicate dissolved O2 data. The different methods of estimating K resulted in similar metabolism estimates within
vegetated streams. However, the linear relationships between ER and GPP were not significantly different among
methods of estimatingK for vegetated or unvegetated streams. This study demonstrates that in shallow, low-gradient,
open-canopy streams, particularly those with highGPP and lowK, practitioners can use inverse modeling approaches
to estimate K. Estimates in unvegetated systems, which have lower GPP, may be hindered by uncertainty in measured
K in low gas transfer environments or by process errors within existing models.
Key words: Bayesian, emergent vegetation, dissolved oxygen, gross primary production, respiration

Gross primary production (GPP) and respiration (ER) are
fundamental processes that produce and consume oxygen
(O2) in aquatic environments, thereby enabling the presence
and growth of aquatic organisms (Odum 1956, Connolly
et al. 2004). GPP and ER are integral drivers of elemental cy-
cling, including C, N, and P (Christensen et al. 1990, Cohen
et al. 2013, Hensley and Cohen 2016). Vegetation in aquatic
systems, especially vascular plants, can amplify the amount
of dissolved O2 within a given habitat and even increase
gas flux (F ) across the air–water interface (Caraco et al.
2006). Thus, quantifying patterns in variation of O2 and
other dissolved gases can allow ecologists to calculate flows
of energy and elements within aquatic ecosystems.

The flux of gas across the surface water–air interface
strongly influences estimates of GPP, ER, and the subse-

quent flow of elements in aquatic ecosystems. This flux is
the product of the velocity (k, m/d) of gas transferred across
the air–water interface and the relative saturation of the wa-
ter. For example, F5 k(aCair2 Cwater), whereCair andCwater

are the concentrations of gas in the air andwater, and a is the
unitless Ostwald solubility coefficient. Gas exchange veloci-
ties (k, m/d) are commonly put into or estimated by metab-
olismmodels as a daily rate (K, d21) (Hall et al. 2016). Quan-
tifying K is challenging, and a variety of measurement and
modeling methods have been used to estimate K for metab-
olism models.

There are several common methods used to estimate K.
The most common approach to estimate K is direct mea-
surement with tracer gas additions (Wanninkhof et al. 1990,
Hall and Madinger 2018). In this approach, tracer gases are
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bubbled into the stream at a known rate, either as a pulse or
to a plateau, and then the decline from the peak tracer con-
centration is measured. This technique relies on scaling rela-
tionships based on Schmidt number (Sc) ratios between
tracer gases and O2 (Jahne et al. 1987). In addition to direct
measurements, we can also estimate K from either published
empirical equations that relate gas exchange rates to physical
characteristics of streams (Raymond et al. 2012) or inverse
modeling approaches that use diel O2 curves to simulta-
neously solve for K and other metabolic parameters, includ-
ingGPP and ER (Holtgrieve et al. 2010, Grace et al. 2015,Hall
et al. 2016). These modeling approaches rely on Bayesian
principles (Gelman et al. 2013) and can use prior information
to inform estimates or search for solutions with minimally-
informed priors.

Direct comparisons of measured and modeled gas ex-
change rates and their influence on metabolism estimates
are lacking. Riley and Dodds (2013) comparedmeasurements
of K to predictive equations for gas transfer rates in several
streams and demonstrated that the best method depended
on site and temperature (but see Demars et al. 2015). How-
ever, measured andmodeled K have only been compared in
a single river (Dodds et al. 2008). Thus, despite decades of
stream ecology research, systematic evaluation of how dif-
ferent approaches bias measurements of gas exchange rates
and the resulting influence on metabolism estimates remains
elusive, even as metabolic regimes continue to be an active
theme of research (McDowell 2015, Bernhardt et al. 2018).
Direct comparisons of measured and modeled K estimates
could better inform researchers of the sensitivity of me-
tabolism estimates to estimation approaches as well as pro-
vide the opportunity to assess hybrid approaches.

Headwater streams are biogeochemical hotspots that ex-
ert considerable control over C and N cycles in stream net-
works, and, thus, influence water quality and ecological in-
tegrity at landscape scales (Peterson et al. 2001, Freeman
et al. 2007, Roberts et al. 2007). Headwater stream systems
appear in agricultural landscapes as channelized headwater
streams, agricultural ditches, and natural drainages. Mea-
surements of diel dissolved O2 and associated metabolism
estimates in small, agricultural streams can address impor-
tant questions related to nutrient and organic matter pro-
cessing in modified landscapes. These measurements can
also address methodological questions related to measuring
gas exchange in shallow, low-gradient systems with vegeta-
tion. However, biologically-driven O2 production from the
presence of vegetation can dominate diel dynamics, making
precise measurements of K even more challenging. Further,
ecosystemmetabolic processes are positively correlatedwith
autotrophic biomass (Bernot et al. 2010), and metabolic
rates are influenced by the availability of organic matter,
which can be readily acted upon in productive streams with
in situ vegetation (Minshall 1978, Kaplan and Bott 1989,
Webster and Meyer 1997, Bernhardt et al. 2018). The com-

plex interaction of the biological influences of vegetation on
gas transfer kinetics and ecosystem metabolism makes in-
vestigating the effects of vegetation on K in small, open can-
opy streams well suited to experimental testing.

Here, we compare 3methods based on either directmea-
surements or inverse modeled estimates of K to estimate
GPP and ER in a set of vegetated and unvegetated experi-
mental streammesocosmswith varying hydraulic residence
times (HRTs). More specifically, these methods used 3 dif-
ferent variations of a Bayesian inverse modeling procedure:
a minimally informed prior on K, an informed prior on K,
and a set K method. The set K method equates to having
perfect prior knowledge of the parameter, is based on direct
measurement of gas exchange in the stream mesocosms,
and estimates only GPP and ER within the model. We used
each of these models with daily diel dissolved O2 data col-
lected over time in the same experimental streams to assess
the influence of these different modeling approaches on
daily ecosystem metabolic rates. Specifically, we asked the
following questions: 1) How does K vary with differences
in hydrology or vegetation? 2) How similar is K between
measured and modeled methods? and 3) How do differ-
ences among methods of calculating K influence estimates
of daily GPP and ER rates across a range of hydrologic and
vegetation conditions?

METHODS
Study site

We used 6 flow-through experimental stream meso-
cosms located at the University of Mississippi Biological
Field Station in Lafayette County, Mississippi (Fig. 1A).
Each stream had a 0.34-m3 headpool followed by a se-
quence of run, pool, run, pool sections. Each of these sec-
tions had a pre-sediment-addition volume of 0.91m3. Thus,
the total volume of each streammesocosm was 3.96 m3 be-
fore we added sediment substrates. We filled streams with
∼5 cm of a mixture of Dundee silty loam and Sharkey clay
soil typical of the nearby Mississippi Alluvial Plain region.
The streams had similar volumes after the sediment addi-
tion (1.54–1.74 m3; Table 1). Inflow water entered each
stream through a PVC pipe at the main headpool and then
flowed through the run, pool, run, pool sequence. The in-
flow water came from a spring-fed pond located ∼50 m
from our experimental setup. This water had stable nutri-
ent concentrations (0.091–0.224 NO3

2-N mg/L, 0.004–
0.012 PO4

23-P mg/L). All outflow water exited the stream
from an outlet standpipe in the final pool and then flowed
through a series of small wooded and vegetated wetlands
before discharging into a local stream.We set the discharge
manually with PVC spigot structures set inline within each
stream to maintain desired flow rates for average HRTs of
2, 4, and 6 h.
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Werandomly selected 3 of the streammesocosms (2, 3, and
6) to be vegetated with Leersia oryzoides (commonly known as
rice cutgrass).We transplanted L. oryzoides into the streams at
an average density of 115 stems/m2 (stream 2 density [l ±
SE]5 152 ± 26, stream 3 density5 108 ± 14, stream 6 den-
sity 5 132 ± 27). These plants came from a nearby head-
water stream-floodplain-wetland complex on thefield station
property. Leersia oryzoides is a native perennial grass species,
widespread across theUnited States, that can tolerate seasonal
to permanent flooding (NRCS 2008). Multiple studies have
demonstrated that vegetation within agricultural ditch sedi-
ments, including L. oryzoides, influences biogeochemical pro-
cesses including sediment O2 demand and denitrification
(Roley et al. 2012, Taylor et al. 2015, Speir et al. 2017). We
left 3 streams (1, 4, and 5) unvegetated with bare sediments
(Fig. 1B). We set up streams ∼3 mo before the study began
to allow vegetation and benthic assemblages to establish.

Flow and gas tracer amendments
Streams were randomly assigned to different HRTs on

eachday tocreate adataset inwhich, over the courseof 3 sam-

pling dates, 3 Ar tracer experiments were run in each stream
for each differentHRT (2, 4, and 6 h) for a total of 18Ar tracer
events. We used Ar gas to conduct a continuous tracer in-
jection and model downstream gas exchange. Propane and
sulfur hexafluoride have commonly been used as tracer gases,
but neither gas is ideal as a tracer. Sulfur hexafluoride is a
potent greenhouse gas, both potential tracers are flammable
and expensive, and neither of them have the same physical
characteristics as O2. Recently, researchers have proposed
that Ar is an ideal tracer gas for 3 reasons: 1) Ar and O2 have
similar Schmidt numbers and solubility; 2) Ar is non-toxic,
inert, and not a greenhouse gas; and 3) Ar can be easily quan-
tified with membrane inlet mass spectrometry (MIMS; Hall
and Madinger 2018).

Prior to injection, we collected pre-plateau samples at
sampling locations 1 and 2, located 2.36 m and 10.97 m, re-
spectively, from the headpool in each stream (Fig. 1C). We
collected triplicate dissolved gas samples with a dissolved
gas sampler constructed from a PVC pipe (30-cm length
with a 3.8-cm inner diameter). We inserted an outlet tube
4 cm above the bottom end of the sampler and sealed the in-
sertion point with silicone (Reisinger et al. 2016, Hall and

Figure 1. A.—Schematic diagram of the experimental streams setup with solid brown indicating unvegetated streams and patterned
green indicating streams vegetated with Leersia oryzoides (rice cutgrass). B.—Picture of streams at University of Mississippi Field station.
C.—Cross sectional view of unvegetated experimental stream (stream dimensions are 12.8-m long and 0.6-m wide, depths vary from
0.1-m in runs to 0.3-m in pools and 0.9-m in headpool). Sampling occurred at the upstream location (1) and the downstream location (2).
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Madinger 2018). To take samples we first submerged the
sampler below the water surface, held it parallel to the flow,
and allowed water to flow through the pipe for 60 s before
sealing the sampler with a rubber stopper while the sampler
remained submerged. We then collected dissolved gas sam-
ples by lifting the sampler from the water, holding it upright
to allowwater toflow through the outlet tube, and allowing a
12-mLExetainer®(Labco, Lampeter,Wales) to overflow3�
prior to being preserved with ZnCl2 and capped.

Additionally, we measured specific conductivity, tem-
perature, and barometric pressure at each sampling loca-
tion with a handheld multiparameter conductivity sensor
(YSI, Yellow Springs, Ohio) and Extech MODEL baromet-
ric pressure sensor (Nashua, New Hampshire).

After pre-injection sampling, we simultaneously added
Ar and established a continuous NaCl solution drip enter-
ing the headpool of each stream. Industrial grade Ar was
added by pumping it into the headpool at ∼0.14 m3/h with
a Point Four™ (Cary, North Carolina) micro bubbler dif-
fuser (30.5 � 6.03 cm) to allow for even bubbling and
higher gas absorption. We concurrently dripped a solution
of 14.9 g NaCl/L into each stream mesocosm at a constant
rate with a peristaltic pump. Pumps were calibrated to de-
liver NaCl solution at 5 mL/min into the headpool, where

the solution could mix thoroughly with the Ar-rich water.
We measured conductivity instead of Cl2 because conduc-
tivity was easier to monitor in the field to determine when a
plateau had been reached.We used In-Situ™ (Fort Collins,
Colorado) water quality monitoring sondes tomeasure con-
ductivity at 15-min intervals at sampling location 2 (Fig. 1B).
Our goal was to increase conductivity by at least 10%.We in-
stalled sondes prior to tracer tests and allowed them to re-
main in the stream for up to 10 h to describe the conductivity
plateau. We used these measurements to calculate HRTs
within each stream. We also measured conductivity with a
handheld water quality meter at all sampling locations every
h during each experimental trial to determine when mea-
surements were consistent across the stream and a plateau
had been reached at the downstream location. When a pla-
teauwas reached,we sampled again for specific conductivity,
stream temperature, and barometric pressure. We also col-
lected triplicate dissolved gas samples following the pre-
injection protocol.

MIMS analysis
We measured dissolved Ar concentrations in our dis-

solved gas samples with anMIMS (Bay Instruments, Easton,
Maryland, USA) (Kana et al. 1994). The calibration standard

Table 1. Physical stream characteristics including volume (m3), average stream depth (z; m), hydraulic residence time (min), median
velocity (m/min), discharge (Q; m3/min), measured K gas exchange rates (Km), K600Ar, and temperature (T; 7C) during tracer tests.

Stream

Volume z HRT Treatment Actual HRT Velocity Q Km K600Ar T

(m3) (m) (min) (min) (m/min) (m3/min) (d21) (d21) (7C)

Vegetated streams

2 1.54 0.17 120 108.8 0.11 0.012 3.51 2.47 28.41

240 184.2 0.07 0.006 7.42 5.14 28.90

360 275.3 0.04 0.0006 10.32 7.41 27.82

3 1.73 0.19 120 172.1 0.07 0.017 1.92 1.29 29.65

240 215.2 0.06 0.007 4.45 3.17 28.02

360 366.8 0.03 0.006 – – 28.05

6 1.57 0.18 120 145.4 0.08 0.011 3.01 2.19 27.45

240 247.8 0.05 0.005 3.83 2.76 27.78

360 246.8 0.05 0.001 6.50 4.56 28.47

Unvegetated streams

1 1.54 0.17 120 134.6 0.09 0.011 5.91 4.23 27.92

240 257.3 0.05 0.006 3.79 2.72 27.88

360 381.1 0.03 0.002 4.12 3.49 22.95

4 1.74 0.19 120 130.8 0.09 0.013 3.85 2.78 27.61

240 261.6 0.05 0.006 1.99 1.82 20.72

360 259.7 0.05 0.001 6.54 4.54 28.81

5 1.62 0.18 120 119.1 0.10 0.019 1.69 1.13 29.87

240 212.4 0.06 0.012 3.82 2.70 28.28

360 308.4 0.04 0.002 4.42 3.13 28.18
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was purified water (18 MQ resistance; Barnstead™ E-
Pure™ Ultrapure Water Purifications Systems, Dubuque,
Iowa) in a round-bottom flask maintained at field temper-
ature with a circulating water bath (VWR International, Rad-
nor, Pennsylvania). We kept this water equilibrated with the
atmosphere by stirring continuously with an overhead stir-
ring device (model # BDC250; Caframo Limited, Ontario,
Canada) set at 300 rpm.We collected a set of 3 standard sam-
ples from the primary standard water bath every 5 to 10 sam-
ples. We recorded the current of mass 40, which represents
Ar gas, for each unknown sample and standard sample set.

We experienced measurement error as we had high dis-
solved Ar enrichment in our streams even though we set
the gas regulators to the lowest measurable discharge rate.
Across our 2-, 4-, and 6-h HRT treatments the Ar concentra-
tion increased to 68, 82, and 91� the background concentra-
tion, respectively. We used absolute Ar concentrations be-
cause MIMS can measure absolute gas concentrations with
high precision when concentrations are high. We observed
an average % coefficient of variation of 0.03% for absolute
Ar concentrations among standards within our sample runs,
which are well within the range of previously-reported preci-
sion (0.05%) for ratio-basedMIMSmeasurements (Kana et al.
1994). We converted mass to charge ratio of 40 currents to
absolute Ar concentration (lmol/L) by calculating Ar con-
centrations in a primary standard set at the membrane tem-
perature and assuming equilibrium with the atmosphere at
a known temperature and barometric pressure.We estimated
saturation concentrations in the flask based on Hamme and
Emerson (2004) and corrected unknown Ar concentrations
for instrument drift during each run based on changes in pri-
mary standard sets distributed throughout the run. Accuracy
ofMIMSmeasurements are related to factors controlling sol-
ubility (temperature, salinity, and barometric pressure), with
nominal accuracy of ∼0.3% for samples that measure close
to the primary calibration point.

Analysis of HRT and Q
WedeterminedHRT for each experimental streammeso-

cosm with the conductivity measurement time series (Ta-
ble 1). We calculated the median reach residence time based
onwhen the conductivity reached½ of the plateau peak value
(Marzolf et al. 1994, Payn et al. 2008). We based the mid-
point of the time series on the minimum conductivity value
before the rising limb of the plateau and the maximum value
in the plateau. We determined discharge, Q, by multiplying
the rate of conductivity tracer injection by the ratio of the
injected tracer conductivity to the increase in conductivity
of the plateau. We calculated median velocity, v, as stream
length divided by median reach residence time.

Gas exchange coefficient calculations
We calculated the measured gas exchange coefficient

(Km) with the following equation (Kilpatrick et al. 1989):

Km 5 ln
Arupstream � Qupstream

Ardownstream � Qdownstream

� �
� 1

HRT

� �
Eq. 1

where Arupstream and Ardownstream represent the measured
concentrations of Ar at sampling locations 1 and 2, respec-
tively. We assumed Qupstream and Qdownstream were equiva-
lent within each stream because the inflow and outflowwere
constant and themesocosmswere not connected to ground-
water sources.We convertedHRT frommin to d for this cal-
culation. The 6-h HRT for stream 3 was excluded from sub-
sequent analyses because of potential sampling errors.

Km values were transformed to a K coefficient with a
Schmidt number of 600 (K600(Ar)) values with the following
equation from Raymond et al. 2012:

K600 Arð Þ

5 Km
600

17992 temp � 106:96ð Þ1 2:797� temp2
� �

2 0:0289� temp3
� �� �

 !20:67

Eq. 2

We used the exponent20.67 instead of the common expo-
nent20.50 for streams because of the longHRTs and lack of
turbulence in our streams (Wanninkhof 1992). We used
K600(Ar) values to predict K values (Kpred) for each stream
based on relationships derived from mixed effects regres-
sions based on hydraulic residence time and vegetation con-
ditions (see Statistical analysis section, Fig. 2, Appendix 1).

Metabolism
Amulti-day deployment of the sensorswas not feasible in

each stream at each HRT, so we set 1 HRT for each stream

Figure 2. Measured gas exchange rate (K ) declined with
increasing discharge, Q, for vegetated streams (closed circles
and solid line, slope l ± SE, 2299.72 ± 68.25, p < 0.001) whereas
there was no significant decline in unvegetated streams (open cir-
cles and dashed line,292.16 ± 57.09, p5 0.07).

Eq. 2
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and estimated metabolism rates based on changes in dis-
solved O2 through time with the 2-station method (Marzolf
et al. 1994, Young and Huryn 1998). We used 2 HOBO®(U26-001, Onset® Computer Corporation, Bourne, Maine)
loggers placed in the middle of each stream channel to mea-
sure dissolved O2 and temperature every 15 min at both
sampling sites in each streamover a period of 9 d, which gave
us 5 to 9 estimates of daily metabolism in each stream. The
2-station method was most appropriate due to the discrete
nature of the experimental streams (Hall and Hotchkiss
2017). We used dissolved O2 logger data to estimate GPP,
ER, and K with the following equation in a Bayesian inverse
modeling procedure following Hall et al. (2016):

O2down t1τð Þ

5
O2up tð Þ 1 GPP

z �ot1τ
t

PPFD
PPFDtotal

� �
1 ER

z τ 1 Kτ
O2,satup tð Þ2O2up tð Þ1O2,satdown t1τð Þð Þ

2

1 1 Kτ
2

Eq. 3

where O2up(t) is the upstream O2 concentration (g O2/m
3)

and O2down(t 1 τ) is the downstreamO2 concentration of that
same parcel of water following travel time, τ. GPP and ER
are expressed in g O2 m

22 d21 and represent positive and
negative rates of O2 production and consumption, respec-
tively. z is mean depth (m) calculated as stream volume (m3)
divided by surface area (m2), O2,satup andO2,satdown are the sat-
uration concentrations upstream and downstream (gO2/m

3),
K (d21) is the gas exchange rate, and PPFD is the sum of the
photosynthetic photon flux density (lmol m22 s21) accumu-
lated in the time interval from t to (t1 τ) divided by the daily
total of PPFD (PPFDtotal) for any given parcel of water.

We fit each daytime period separately, with the d starting
1 full HRT before midnight and ending 1 full HRT after mid-
night the following d (2–6.5 h).We used the functionmetrop
in the mcmc package (version 0.9–6; Geyer and Johnson
2019) in R to sample from the posterior probability distribu-
tion P (lFD). Each chain was run for 20,000 iterations follow-
ing a 1000 iteration burn-in. We did not thin chains, and we
adjusted the proposal distribution to achieve an acceptance
rate of∼20%.We usedminimally-informative prior probabil-
ity distributions for GPP and ER (GPP ∼N [l5 5, SD5 10];
ER ∼ N [l 5 25, SD 5 10]).

We ran themodel 3� for each d in each stream: once for a
minimally-informed prior, once for informed prior probabil-
ity distribution on K, and once where K was set (Kpred) and
not part of the solution set. For the minimally-informed
prior probability distributions, we used Kuninformed ∼ N (l 5
5, SD5 5; Hall et al. 2016). We based informed prior proba-
bility distributions on ANCOVA models that related K to
vegetation andQ (see Statistical analysis). In vegetated streams
we used Kinformed ∼ N (l 5 Kpred, SD5 SD[Kpred]) where l
was the Kpred for that stream given its vegetation status and
Q, SD(Kpred) 5 ([l 1 2SE] 2 [l 2 2SE]). For unvegetated
streams, the slopes of the relationship between K andQ were
not significantly different from 0. Thus, we used Kinformed ∼N

(l 5 Kpred, SD 5 2.865), where SD was equal to the confi-
dence interval for the intercept (Appendix 1). For informed
priors, KO2 was transformed from Kpred within the model
with the daily average temperature for that stream with the
following equation from Raymond et al. (2012):

KO2

5 Kpred

,
600

15682 temp� 86:04ð Þ1 2:142� temp2
� �

2 0:0216� temp3
� �� �

 !20:67

Eq. 4

The set K scenario used the same KO2 as detailed above
except the value of KO2 was estimated outside the model,
prior to model implementation, with results from Ar tracer
tests.KO2 was dependent on the stream temperature at each
15-min interval, resulting in small diel fluctuations in the
value as the stream heated and cooled. For this scenario we
modified the model to solve only for GPP and ER.

Statistical analysis of HRT and K
Our previously-described metabolism models used a

Bayesian framework. In favor of pragmatism, however, we
analyzed the field-collected data and patterns of GPP and
ER outputs from Bayesian models with frequentist statistics
to make our results accessible to a wider audience, although
we recognize this may be controversial. All analyses were
done in R version 3.5.0 (R Foundation for Statistical Com-
puting, Vienna, Austria).

For our frequentist analysis ofK based on the argon tracer
test data, we employed a randomized block experimental de-
sign that involved repeated sampling of the set of 6 streams
over 3 different d. As streams needed to acclimate to each
HRT, it was not feasible to conduct more than 1 tracer test
in 1 day. In this design, each d was a block that we used to
examine relationships betweenmeasuredK andQ associated
with different HRTs within vegetation treatments. We used
linearmixed effects (LME)models to account for the random
effects of differences among individual streams (∼1Fstream)
when we compared how HRT changed with vegetation or
depth. We also used the random effect of streams to account
for multiple measurements from 1 stream when we analyzed
the differences in K between treatments. We treated both
vegetation and depth as factors when we tested for differ-
ences in HRT with vegetation or depth. When we tested
for differences in K with HRT and vegetation, we converted
HRT to Q and treated it as a continuous predictor whereas
we treated presence or absence of vegetation as a categor-
ical factor (LME ANCOVA). We used the restricted max-
imum likelihood criterion to fit all models. We assessed
the assumptions of all models visually with normality plots
(qqnorm) and standardized residual plots across treatments
(Zuur et al. 2009). If error variances differed across levels of
treatments, this heterogeneity was incorporated into our
model by modeling variance separately among treatments
with the VarIdent command (Zuur et al. 2009). The best

Eq. 4

Eq. 3
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model was selected based on the Akaike Information Crite-
rion adjusted for small sample sizes. We used Tukey’s hon-
estly significant difference multiple comparison of means
to test for significant differences among levels offixed factors
and the lstrends function to estimate and compare slopes of
K and discharge among vegetation treatments. We used the
best fit model from this analysis (LME [K ∼ Q � vegetation,
random 5 ∼1Fstream]) to predict K (Kpred) and provide
an informed prior for subsequent Bayesian metabolism
models. The LMEmodels were run in the nlme package ver-
sion 3.1–140 (Pinheiro et al. 2019). Tukey honestly signifi-
cant difference tests were run in themultcomp package ver-
sion 1.4–10 (Hothorn et al. 2008), and differences in slope
were tested with lstrends in the lsmeans package version 2.30–
0 (Lenth 2016).

Bayesian metabolism models were run for each model
version, stream, and d. We used the triplot function within
the learnBayes package version 2.15.1 (Albert 2018) to ex-
tract posterior probability distributions to visualize differ-
ences between methods of estimating GPP, ER, and K (in-
formed and minimally-informed prior only for K ) for each
stream based on multiple 24-h periods (range 5–9 d). We
used daily estimates from metabolism model outputs based
on medians of posterior probability distributions in LME
models to assess how ER varied with GPP. Models included
randomeffects to account for differences among dwithin in-
dividual streams (∼1Fstream/d).We ranmodels withGPP as
a continuous predictor and themethod for estimatingK and
presence or absence of vegetation were considered categor-
ical factors that could potentially influence differences in
slope among the 3 approaches (LMEANCOVA). Model fit-
ting and assessment of assumptions followed methods pre-
sented earlier (Zuur et al. 2009).

RESULTS
Analysis of tracer test measurements

MeasuredK valueswere differentially influenced byHRT
between unvegetated and vegetated streams. We found the
interaction between stream discharge and vegetation influ-
enced the measured K600Ar (LME ANCOVA, F1,9 5 5.44,
p 5 0.04) (Fig. 2). K values decreased as HRT values de-
creased (slope l ± SE, 2299.72 ± 68.25, p < 0.001) in vege-
tated streams, but this effect was less clear in unvegetated
streams (292.16 ± 57.0, 9; p 5 0.07) (Table 1). HRT did
not differ significantly between vegetation treatments (LME
ANCOVA, F1,4 5 0.7, p 5 0.45) or with stream depth (F1,4 5
0.09, p5 0.78). Average stream temperature did not signif-
icantly differ between vegetation treatments (LMEANCOVA,
F1,4 5 1.64, p5 0.26).

Comparison of model estimates to measured values
of dissolved O2

Model estimates of dissolvedO2 in the unvegetated stream
performed worse when compared to observed dissolved O2

values than model fits in the vegetated stream (Fig. 3A, B).
All methods under predicted dissolvedO2 saturation recov-
ery during the morning and failed to capture the magni-
tude of the overnight saturation deficit in this unvegetated
stream.The largest difference betweenmethodswas between
the minimally-informed and informed methods with the set
K method in the unvegetated stream (Fig. 3A). In contrast,
all methods predicted similar patterns in modeled dissolved
O2 in vegetated stream and better replicated the observed
downstream values, even for the early morning sag in dis-
solved O2 (Fig. 3B).

Comparison of methods to calculate gas exchange
rate coefficients

When estimating K, the minimally-informed and in-
formed prior methods had a greater degree of overlap in
posterior probability densities (PPD) in vegetated streams
(Fig. 4A, C, E) than in unvegetated streams (Fig. 4B, D, F).
In unvegetated streams, posterior means of K overlapped less
at shorter HRTs. Mean ±95% credible intervals (l ± 95% CI)
were: minimally informed 5 7.85 ± 0.62 and informed 5
7.02 ± 0.54 for stream 1, and minimally informed 5 4.86 ±
0.77 and informed5 3.37 ± 0.62 for stream 4 (Fig. 4B, D, re-
spectively). For stream 5, which had a longer HRT of 6.4 h,
the different modeling methods had similar posterior prob-
ability distributions (Fig. 4F).

Moreover, differences inK estimates were observable be-
tween vegetated and unvegetated streams. Based on the set
K method, vegetated streams had higher values of K than
unvegetated streams for both 4 and 6 hHRTs (Table 2). This
result may be driven by the increased turbulence caused by
stream vegetation but may not be commonly observed in
experiments because of the decreasing velocity associated
with in-stream vegetation growth. However, K values from
the 2-h HRT treatments (Fig. 4A, B; Table 2) did not follow
this pattern. The lower K estimate for the vegetated stream
could be because of the significantly-longer measured HRT
(∼53 min longer), which had more pronounced decreases
in K with increasing discharge that were similar to patterns
of K changes in streams with shorter HRTs (Fig. 2). Fur-
thermore, stream 1 and stream 5 (Fig. 4B, F) had exception-
ally high posterior means relative to their vegetated stream
counterparts (Fig. 4A, E) based on both the informed and
minimally-informed methods. The set K method in these
streams also resulted in much lower K values than the in-
formed andminimally-informedmethods (Table 2). Across
all streams, the set K method resulted in higher posterior
means with increasing HRT, which was similar tomeasured
trends (Table 2).

Effects on metabolism
We present our estimates of GPP as PPD, which provide

some evidence that the method used to measure or esti-
mate K influences measures of ecosystem function in both
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vegetated and unvegetated streams (Fig. 5A–L). GPP esti-
mates amongmethods were similar in vegetated streams be-
cause there was a high degree of overlap in PPD (Fig. 5A,
E, I). In vegetated streams, GPP estimates increased with in-
creasing HRT. GPP estimates were less consistent among
methods, and there was no clear relationship with HRT in
unvegetated streams (Fig. 5B, F, J). Informed and minimally-
informed models resulted in high estimates of GPP that did
not overlap significantly with GPP estimates based on set K
in streams 1 and 5 (Fig. 5B, J).However, the results all 3meth-
ods overlapped for stream 4 (Fig. 5F).

Across the different streams andHRT treatments, the ER
estimates, also presented as PPD, from the 3 different meth-
ods were less consistent than the GPP estimates. ER esti-
mates generally increased with increasing HRT in vegetated
streams, but this trend was not observed in unvegetated
streams (Table 2). The most overlap among PPD occurred
in streams 2 (vegetated; Fig. 5C) and 4 (unvegetated; Fig. 5H).
The biggest observed differences between the informed and
minimally-informed models and the set K estimates oc-
curred in stream 5 (unvegetated; Fig. 5D). Further, estimates
of ER in stream 1 between models based on minimally-
informed and setKdid not overlap substantially (unvegetated;
Fig. 5L). ER estimates overlappedmoderately amongmethods
of estimating K in the 2 other vegetated streams (Fig. 5G, K).
Overall, the lowest ER estimates in unvegetated streams came
from metabolism models that used the set Kmethod.

Scatterplots contrasting results from the 3 different
methods provide further evidence that vegetation influ-
enced how similar the estimates ofGPP and ER frommetab-

olismmodels were based on themethods used to estimateK
(Fig. 6A–I). In vegetated streams, GPP and ER estimates
from minimally-informed (Fig. 6A, B) or informed (Fig. 6D,
E) priors increased as estimates from set Kmodels increased.
However, model estimates based on minimally-informed or
informed priors in vegetated streams tended to have larger
error bars than set K estimates at high GPP and ER rates.
In contrast, set K models in unvegetated streams produced
estimates for both GPP and ER that did not vary consistently
with output from either the minimally-informed or informed
models (Fig. 6A, B, D, E). GPP estimates based on a setKwere
higher than estimates fromminimally-informed or informed
models at the low range of estimates but were lower at the
high range of estimates. Additionally, in several instances
the estimates based on informed and minimally-informed
priors were greater and containedmore error than estimates
based on set K. Informed priors and minimally-informed
priors gave similar estimates of GPP and ER in vegetated
streams (Fig. 6G, H). These models also gave similar results
in unvegetated streams, although therewere 2 instanceswhere
minimally-informed estimates were higher than informed
estimates (Fig. 6G, H).

Comparisons of set K to K modeled with minimally-
informedoruninformedpriors showthatminimally-informed
priors (Fig. 6C) lead to greater uncertainty than do informed
priors (Fig. 6F). The error inK values consistently overlapped
with the 1∶1 line for the contrast between the informed and
uninformedmodels but increased at higherK values (Fig. 6I).

Choice of method to determine K did not influence
broad patterns in ER and GPP. Positive slopes >1 between

Figure 3. Modeled and observed downstream dissolved O2 concentrations shown as % O2 saturation for unvegetated stream 5 (A)
and vegetated stream 3 (B). Open gray circles represent observed downstream dissolved O2 values whereas solid gray lines, dashed
black lines, and solid black lines represent informed, set K, and minimally-informed model output, respectively. GPP and ER esti-
mates for the unvegetated stream differ among methods, while all methods result in consistent GPP and ER estimates in the vege-
tated stream.
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ER and GPP indicated that streams became increasingly net
heterotrophic at higher GPP rates for both vegetated and
unvegetated streams (Fig. 7A–C). Overall, ER increased
more quickly in response to increasing GPP in vegetated
streams (l ± SE, 1.93 ± 0.08) than in unvegetated streams
(1.47 ± 0.06) (LME ANCOVA; F1,76 5 45.45, p < 0.0001).
Slope did not vary with the approach used to estimate
K (F2,76 5 0.61, p 5 0.55), though there was evidence that
differences in slope among approaches for estimatingKwere
associated with vegetation status of a stream (F2,76 5 3.39,
p 5 0.04). Slopes derived from the set K method were not
different between vegetated and unvegetated streams. How-
ever, this potential pattern could have been driven by the

much smaller range of ER and GPP estimates for unvege-
tated streams based on the set K method (Fig. 7C).

DISCUSSION
The gas exchange rate is a key variable that influences the

accurate estimation of dissolved gas fluxes and associated
ecosystem process including GPP, ER, and denitrification
in streams (Pribyl et al. 2005, Tobias et al. 2009, Holtgrieve
et al. 2010). We experimentally manipulated the presence
of vegetation and HRT to better understand how hydrol-
ogy and vegetation influence gas exchange in low gradient
headwater streams, howK varies among different estimation

Figure 4. Bayesian posterior probability density plots of the gas exchange rate (K ) summarizing data estimates from different
prior probabilities. Informed priors are represented by the solid gray line, and minimally-informed priors are represented by the black
line. Panels A, C, and E represent streams 3, 2, and 6, respectively, which are vegetated. Panels B, D, and F represent streams 5, 4,
and 1, respectively, which are unvegetated. Informed priors are provided in the top right corner of each panel. The average value for
set K is in Table 2.
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methods, and how these differences impact estimates of
GPP and ER.

Effects of hydrology and vegetation on K
In the shallow, low-gradient streammesocosms we used,

measured K was attenuated by vegetation as discharge in-
creased, whereas measured K in unvegetated streams was
less predictable. These patterns suggest that interactions be-
tween vegetation and stream flow are important in low gra-
dient headwater streams (Thyssen et al. 1987,Wilcock et al.
1999, Kaenel et al. 2001; Fig. 2). Vegetated streams hadmore
consistent K and metabolism estimates among the 3 meth-
ods than did unvegetated streams, as well as better model
fits. We did not observe clear patterns in metabolism esti-
mates between modeled and measured K approaches for
unvegetated streams across a range of HRTs. These results
suggest considerable error in either modeled, measured, or
both estimates ofK in unvegetated streams. Informed priors
did not appear to improve metabolism model output over
minimally-informed priors in either in vegetated or unvege-
tated streams. This result is probably because our data ex-
hibited strong diel patterns in gas concentrations, which
may outweigh prior information in our metabolism mod-
els. Scaling relationships between GPP and ER indicated

that net heterotrophy increased with increasing GPP in all
streams, regardless of which approach was used to esti-
mate K.

The parameter K is a metric of how fast a change in gas
concentration in stream water occurs given gas equilibra-
tion with the atmosphere. K can be affected by physical pa-
rameters such as slope, turbulence, and stream velocity par-
ticularly in small, steepmountainous streams (Hall et al. 2012,
Hall andMadinger 2018). In shallow, low-gradient streams,
stream depth and volume can be important influences, al-
though our experimental streams had similar volumes and
channel configurations. However, the factors affecting K
may be especially influenced by vegetation in shallow, low-
gradient systems. The greater negative slope of K with in-
creasingQ in vegetated streams than in unvegetated streams
could have occurred because vegetation influences hydraulic
roughness, disrupts laminar flow, and increases small-scale
turbulence (Bansal 1973, Watson 1987, Wilcock et al. 1999).
Several studies have measured higher K after the removal of
vegetation and attributed this difference to the modification
of physical controls on current velocity, which is a major in-
fluence onK (Wilcock et al. 1999, Kaenel et al. 2001, Arroita
et al. 2019). However, Soana et al. (2018) found higher K
in densely-vegetated (1200–1900 plants/m2)mesocosms ex-
periments with velocities ranging from 0 to 6 cm/s relative

Table 2. Gross primary production (GPP), ecosystem respiration (ER), and gas exchange values (K) for concurrent deployment by
vegetation and hydraulic residence time (HRT) treatment. Values include informed priors used to model results as well as the mean
values of the 50th percentile model output, representing several daily estimates (n 5 5– 9 d) and the associated 95% confidence
intervals (CI) for each method.

Stream

Vegetation HRT
treatment

Informed
prior on K

Average (informed
prior method)

Average (minimally-
informed prior method)

Average
(set K method)

(Actual HRT) (l ± SD) (l ± 95% CI) (l ± 95% CI) (l ± 95% CI)

3 Vegetated K (0.78, 4.88) GPP (1.75 ± 0.36) GPP (1.75 ± 0.40) GPP (1.82 ± 0.35)

2 h ER (23.27 ± 0.81) ER (23.24 ± 0.80) ER (23.28 ± 0.61)

(172.1 min) K (0.90 ± 1.22) K (0.87 ± 1.17) K (1.14 ± 0.03)

2 Vegetated K (4.56, 4.21) GPP (2.47 ± 0.38) GPP (2.46 ± 0.40) GPP (2.04 ± 0.44)

4 h ER (24.05 ± 1.00 ER (24.03 ± 1.03) ER (23.05 ± 0.64)

(184.2 min) K (8.16 ± 2.49) K (8.12 ± 2.61) K (6.71 ± 0.13)

6 Vegetated K (4.99, 4.51) GPP (3.35 ± 0.49) GPP (3.40 ± 0.54) GPP (3.27 ± 0.37)

6 h ER (25.94 ± 1.62) ER (26.28 ± 2.25) ER (25.95 ± 0.57)

(246.8 min) K (5.57 ± 2.60) K (6.00 ± 3.34) K (7.32 ± 0.11)

5 Unvegetated K (3.52, 2.87) GPP (3.29 ± 0.90) GPP (3.77 ± 1.02) GPP (1.19 ± 0.59)

2 h ER (26.03 ± 1.01) ER (26.83± 1.15) ER (22.64 ± 0.73)

(119.1 min) K (9.10 ± 1.60) K (10.56 ± 1.54) K (2.68 ± 0.05)

4 Unvegetated K (3.68, 2.87) GPP (1.71 ± 0.48) GPP (1.83 ± 0.56) GPP (1.63 ± 0.24)

4 h ER (22.74 ± 0.81) ER (22.97 ± 0.97) ER (22.58 ± 0.53)

(261.6 min) K (3.54 ± 2.07) K (4.16 ± 2.50) K (4.62 ± 0.07)

1 Unvegetated K (3.88, 2.87) GPP (2.27 ± 0.62) GPP (2.39 ± 0.73) GPP (1.48 ± 0.22)

6 h ER (22.71 ± 0.76) ER (22.87 ± 0.73) ER (21.61 ± 0.22)

(381.1 min) K (7.92 ± 1.52) K (8.35 ± 1.81) K (5.34 ± 0.09)
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to unvegetatedmesocosms. Together, these results suggest a
nonlinear response inK as velocities in vegetated streams in-
crease from 0. Additionally, observational studies in low-
slope streams suggest factors other than physical turbulence,
including turbidity and total organic C content through in-
direct effects on stream temperature, may drive gas exchange
in these systems particularly at low flows (Parker and De-
Simone 1988, Demars and Manson 2013). Lastly, the range
of measured Kwas greatest in vegetated streams (Fig. 2). This
suggests that the presence of vegetation could generate more
dynamic rates across a given range of HRTs because of non-
linear relationships between the behavior of plant material in
response to increasing flows (Watson 1987, Sand-Jensen et al.
1989, Wilcock et al. 1999).

Modeling gas exchange
PPDof gas exchange from theminimally-informed and in-

formedmodels were consistent with the setKmethod in veg-

etated streams (Fig. 4A, C, E; Table 2). In contrast, model es-
timates differed more in unvegetated streams (Fig. 4B, D, F;
Table 2).Generally, vegetated streams aremore likely to have
high GPP values, which may have contributed to consistent
estimates of K between models (Holtgrieve et al. 2010). In
contrast, unvegetated streams may lack turbulence, espe-
cially over the short channel length of the streammesocosm,
and therefore be incompletely mixed. Incomplete mixing
could contribute to heterogeneity in gas exchange rates along
unvegetated channels. Additionally, the error structure of
the current model addresses parameter error within a sin-
gle day well but lacks the ability to represent errors across
days adequately (Hall et al. 2016). This error structure could
thereby contribute to observed differences amongmethods,
particularly in unvegetated systems. Finally, inverse model-
ing approaches can suffer from equifinality, which occurs
when model estimates that predict the observed data can
be reached by several potential combinations of parameter
estimates (Appling et al. 2018). Inconsistency in parameter

Figure 5. Bayesian posterior probability density plots of gross primary production (GPP) and ecosystem respiration (ER) summarizing
data estimates from different prior probabilities on K including informed priors represented by the solid gray line, minimally-informed
priors represented by the black gray line, and set the gas exchange rate (K ) represented by the dashed black line. Panels A, E, and I rep-
resent GPP estimates for vegetated streams 3, 2, and 6 respectively. Panels B, F, and J represent GPP estimates for unvegetated streams 5,
4, and 1, respectively. ER estimates for vegetated streams 3, 2, and 6 are in panels C, G, and K, respectively. Panels D, H, and L represent
ER estimates for streams 5, 4, and 1, respectively.
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estimates among methods within unvegetated streams sug-
gests potential equifinality. However, poor model agree-
ment with observed diel curves in unvegetated streams sug-
gests a greater issue within the model to replicate observed
diel patterns in O2. In vegetated streams, more consistent
conclusions among models and associated parameter esti-
mates suggest that equifinality was not an issue, possibly
because of strong linkages between GPP, autotrophically-
fueled ER, and resulting gas transfer estimates (Bernot et al.
2010, Hall and Beaulieu 2013, Solomon et al. 2013).

Effects of method choice on metabolism estimates
The effect of different methods on estimates of K trans-

ferred to metabolism results. Overall, there was a greater

degree of agreement among methods for estimates of GPP
and ER in vegetated streams. In contrast, in the unvegetated
streams both informed and minimally-informed models
yielded higher, sometimes more than 3� higher, GPP esti-
mates with more error than the set K method. Previous
investigations suggest temperature and light may be more
significant drivers of GPP and associated variability in un-
vegetated streams than in vegetated streams (Mulholland
et al. 2001, Valett et al. 2008, Bernot et al. 2010, Beaulieu
et al. 2013). Average temperatures were similar among our
study streams, but differences between upstream and down-
stream sondes in unvegetated streams were slightly greater
than vegetated streams (unvegetated: 1.067C ± 3% [l ± coef-
ficient of variation], vegetated: 0.59± 2%). This differencemay
have contributed to a wider range of metabolism parameter

Figure 6. Biplots of Bayesian median and 95% credible intervals that show the degree of overlap in gross primary production (GPP),
ecosystem respiration (ER), and the gas exchange rate (K ) among contrasting methods. Model output is based on set K vs minimally-
informed (uninf K ) prior to model K for (A) GPP, (B) ER, and (C) K. Model output is based on set K vs informed prior to model K
for (D) GPP, (E) ER, and (F) K. Model output is based on minimally-informed (uninf K ) vs informed (inf K ) prior to model K for (G) GPP,
(H) ER, and (I) K. Gray points represent unvegetated streams and black points represent vegetated streams. The black line in each
panel is the 1∶1 line.
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estimates in unvegetated vs vegetated streams as the model
sought to accurately estimatedownstreamdissolvedO2 curves,
but this possibility is unlikely. ER rates were also higher
based on both informed and minimally-informed models
in unvegetated streams (Fig. 6B, E), which indicates the

possibility of smaller C fluxes than predicted by modeling
efforts. An alternative explanation may be that lower acti-
vation energy requirements for respiration than for photo-
synthesis yield even greater divergence among methods for
posterior means of ER (Enquist et al. 2003, Acuña et al.
2008). To support this, Demars et al. (2011) found the rela-
tionship of ER with temperature is stronger than the rela-
tionship of GPP with temperature in groundwater-fed Ice-
landic streams.

Linear relationships between GPP and ER always indi-
cated increased heterotrophy in response to increasing GPP,
regardless of which approach was used to estimate K (Fig. 7A–
C). Slopes describing this response were always higher in
vegetated vs unvegetated streams, consistent with previous
findings that slopes describing GPP–ER relationships in-
creased in macrophyte dominated habitats relative to unveg-
etated streams (Alnoee et al. 2016). Additionally, overall
patterns of increasing heterotrophywith increasing photosyn-
thetic capacity in these shallow, low-gradient, open-canopy
streams were similar among all approaches to estimating K.
Patterns within our streams suggest that as GPP increased,
ER rates exceeded photosynthetic capacity, which is similar
to results fromhighly-productive, open-canopy streams (Ro-
senfeld andMackay 1987, Frankforter et al. 2010, Marcarelli
et al. 2011, Roley et al. 2014).

Implications for conducting studies
in low-gradient streams

Methods formeasuring gas exchange and streammetab-
olism continue to evolve because of improvements in knowl-
edge and technology (Bernhardt et al. 2018, Hall and Mad-
inger 2018). Our results contribute to understanding how
gas exchange and associated metabolism estimates are in-
fluenced by the practitioner’s choice of method in shallow,
low-gradient, open-canopy streams. Our findings show that
1) K decreases as discharge, Q, increases; 2) different meth-
ods produce wide variation in K estimates; and 3) this varia-
tion inK estimates affectsmetabolism estimates, particularly
for unvegetated streams. High rates of gas exchange in small,
steep-sloped streams necessitate empirical measurements
for accurate estimates of K (Hall and Madinger 2018). In
contrast the ability to infer gas exchange from diel variation
in O2 data shows promise in larger rivers with low gas ex-
change and high GPP (Hall et al. 2016). This study demon-
strates that given high GPP and low gas transfer in shallow,
low-gradient, open-canopy streams, practitioners can con-
sider the use of minimally-informed or informed models to
estimate gas exchange rates within these habitats. This is es-
pecially apparent in vegetated streams, where minimally-
informed or informed models and models based on empir-
ical measurements of K (set K ) predicted similar measured
trends in dissolved O2 and estimated metabolism parame-
ters. However, model fits struggled to replicate dissolved
O2 data in unvegetated streams, possibly because of process

Figure 7. Gross primary production (GPP) vs ecosystem
respiration (ER) from metabolism models based on minimally-
informed prior probability distributions on the gas exchange
rate (K ) solved in a Bayesian framework (A), informed prior
probability distributions on K solved in a Bayesian framework
(B), and a set K (C). The gray line in each panel is the 1∶1 line.
Circle size indicates K, such that larger circles indicate higher K.
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errors (sensu Appling et al. 2018) within the model and un-
certainty inmeasuredK in environmentswith lowgas trans-
fer contribute to inconsistencies between modeled and ob-
served diel patterns.
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