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Abstract: Observational data are frequently used to better understand the effects of changes in P and N on stream
biota, but nutrient gradients in streams are usually associated with gradients in other environmental factors, a phe-
nomenon that complicates efforts to accurately estimate the effects of nutrients. Here, we propose a new approach
for analyzing observational data in which we compare the effects of changes in nutrient concentrations in time
within individual sites and in space amongmany sites. Covarying relationships between other, potentially confound-
ing environmental factors and nutrient concentrations are unlikely to be the same in both time and space, and,
therefore, estimated effects of nutrients that are similar in time and space are more likely to be accurate. We applied
this approach to diatom rbcLmetabarcoding data collected from streams in the East Fork of the Little Miami River
watershed, Ohio, USA. Changes in diatom assemblage composition were consistently associated with changes in the
concentration of total reactive P in both time and space. In contrast, despite being associated with spatial differences
in ammonia and urea concentrations, diatom assemblage composition was not associated with temporal changes in
these nitrogen species. We suggest that the results of this analysis provide evidence of a causal effect of increased P
on diatom assemblage composition.We further analyzed the effects of temporal variability inmeasurements of total
reactive P and found that averaging periods greater than ~1 wk prior to sampling best represented the effects of P on
the diatom assemblage. Comparisons of biological responses in space and time can sharpen insights beyond those
that are based on analyses conducted on only 1 of the 2 dimensions.
Key words: phosphorus, nitrogen, DNA metabarcoding, algae, periphyton, agriculture, temporal variability, rbcL,
biomonitoring, Bayesian hierarchical model

Elevated nutrient concentrations are one of themost perva-
sive effects of human activities in freshwater ecosystems
(Dodds et al. 2009, Mekonnen and Hoekstra 2018). Excess
N and P, arising from a broad variety of human activities,
are among the primary causes of degradation to streams
in the USA (USEPA 2016). However, quantifying the effects
of excess nutrients is challenging. Innatural settings, changes
in nutrient concentrations and in other environmental fac-
tors (e.g., flow, conductivity) often occur simultaneously,
so specifically attributing changes in biota to elevated nutri-
ents is difficult. That is, effects of environmental factors that
are correlated with nutrient concentrations can introduce
bias, or confound, estimates of nutrient effects. These diffi-
culties are compounded in streams because of the transient
nature of the chemical, physical, and biological attributes of

these systems (Baker and Webster 2017) and because the
stream food web is fueled by both autochthonous and al-
lochthonous carbon sources. The dominant autochthonous
source in wadeable streams is attached algae (periphyton)
on the stream bed, but biogeochemical mechanisms for nu-
trient turnover and uptake in periphyton are often decou-
pled fromwater column nutrient concentrations. For exam-
ple, elevated concentrations of nutrients during storm events
often exceed the capacity for uptake by periphyton (Griffith
et al. 2009, Smucker et al. 2013, Wood et al. 2015, Vade-
boncoeur and Power 2017,Costello et al. 2018). Likewise, ef-
fects of allochthonous sources that wash into stream reaches
from upstream or adjacent environments may not be directly
related to nutrient loads or concentrations estimated from
grab sampling at one point in time. Different macronutrient

E-mail addresses: 3yuan.lester@epa.gov; 4smucker.nathan@epa.gov; 5nietch.christopher@epa.gov; 6pilgrim.erik@epa.gov

Received 15 April 2021; Accepted 28 October 2021; Published online 21 January 2022. Associate Editor, Raphael David Mazor.

Freshwater Science, volume 41, number 1, March 2022. © 2022 The Society for Freshwater Science. All rights reserved. Published by The University of
Chicago Press for the Society for Freshwater Science. https://doi.org/10.1086/718631

mailto:yuan.lester@epa.gov
mailto:smucker.nathan@epa.gov
mailto:nietch.christopher@epa.gov
mailto:pilgrim.erik@epa.gov
https://doi.org/10.1086/718631


species (e.g., reactive P and N) can also covary with one an-
other, further increasing the uncertainty of analyses targeted
toward estimating the effects of each species (Jones et al.
2001).

Relationships between increased nutrients and biolog-
ical responses can be quantified through experimental
manipulations or analysis of observational data. In experi-
mental manipulations, the ecosystem ismodified to accom-
modate the introduction of treatment and control groups.
Streamsidemesocosms (Quinn et al. 1997, Rier and Steven-
son 2006) and laboratory meso- and microcosms (Horner
et al. 1990, Manoylov and Stevenson 2006, Wagenhoff et al.
2013, Shatwell et al. 2014) simplify the ecosystem so that
it can be replicated and nutrient concentrations altered.
Nutrient-enriched substrates (Grimm and Fisher 1986, Lowe
et al. 1986, Bushong and Bachmann 1989, Chessman et al.
1992, Capps et al. 2011) can locally increase N and P concen-
trations in natural settings, but the method requires the in-
troduction of artificial substrates that can also alter periph-
yton assemblage composition. Conducting these experiments
is often resource and labor intensive, and, therefore, they
usually can be implemented only in a small number of loca-
tions. Hence, experimentally identified relationships may
not be widely generalizable to other locations.

Observational field data can be more easily collected
from a wide variety of streams, and analyses of these data
can potentially yield more broadly applicable relationships
(Dodds et al. 2002), but causal relationships are difficult to
establish through the use of observational data. Most rela-
tionships between nutrient concentration gradients and bi-
ological effects estimated from observational data can only
corroborate or contradict known causal relationships be-
cause of the potential bias introduced by confounding vari-
ables. That is, any estimates of relationships between nutri-
ents and biotamay be altered by other environmental factors
that covary with nutrient concentrations and that cannot be
directly controlled in observational studies. For example,
conductivity often covaries with nutrient concentrations and,
on its own, can also alter biological assemblages (Smucker
and Vis 2011a); therefore, a statistical estimate of nutrient
effects may be biased if the analysis does not explicitly con-
trol for the effects of conductivity. Several methods for ad-
dressing the effects of known confounding variables and
improving the accuracy of the estimated effects have been
proposed, ranging in complexity from multiple linear re-
gression to propensity score matching and machine learn-
ing (Yuan 2010, Smucker et al. 2013,Wagenhoff et al. 2017,
Waite et al. 2020). However, these methods require that
measurements of potential confounding variables are avail-
able, and they do not address the possible effects of un-
known confounders.

Here, we describe an approach for analyzing observa-
tional data to provide stronger evidence of a causal link be-
tween increased nutrients and diatom assemblage compo-

sition by comparing relationships estimated in time at
individual sites and estimated in space among many sites.
Diatoms are commonly used as indicators of nutrient ef-
fects in streams (Potapova and Charles 2007, Stevenson
et al. 2008, Rimet 2012), but they also are known to be af-
fected by other environmental factors and exhibit compo-
sitional variability due to other stochastic factors (e.g., im-
migration; Potapova and Charles 2002, Soininen 2007,
Smucker and Vis 2011c, Taylor et al. 2018). As described
above, effects of environmental factors that covary with nu-
trients can introduce bias, or confound, estimates of nutri-
ent effects. However, confounding variables are unlikely to
covary with nutrients in the same way in both temporal and
spatial dimensions; therefore, relationships that are similar
when estimated across both dimensions are more likely to
arise from a causal relationship. Moreover, with this ap-
proach, direct measurements of possible confounders are
not necessary, increasing the robustness of the method.
Similarity in effects estimated in space and in time also sat-
isfy the consistency criterion, as proposed by Hill (1965) in
his set of criteria for establishing causal relationships. We
hypothesized that the quantitative relationships between
reactive nutrients on the occurrence of periphytic diatom
species in small streams converge in spatial and temporal
analyses, and, therefore, in combination, observed variation
in species composition can more likely be causally attrib-
uted to increased nutrient concentrations. Data collected
to test this hypothesis also allowed us to examine how var-
iability in antecedent nutrient concentrations affects dia-
tom assemblages, thus improving estimates of nutrient ef-
fects on diatom assemblages.

METHODS
Study design

We collected a dataset with sufficient samples to esti-
mate relationships between diatom assemblage composi-
tion and nutrient concentrations in both spatial (25 differ-
ent streams) and temporal dimensions (10–12 sampling
visits/stream). During each visit, we collected measure-
ments of the concentrations of different nutrient species
and periphyton samples. We conducted DNA metabar-
coding analyses of each sample to identify diatom taxa that
were present in each sample and estimated relationships
between different nutrient species and diatom assemblage
composition over time for each site.We compared the tem-
poral relationships with a relationship estimated between
average nutrient concentrations and diatom assemblage
composition in space among all sampled sites.

The dataset we analyzed is unique in 2 ways. First, the
study was designed to ensure that sufficient samples were
available to estimate both temporal and spatial effects: we
collected weekly samples, except for the last 2 sampling
events in October that occurred 2 wk after the previous
ones, from 25 wadeable stream sites during mid-July to
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October 2016. Second, we conducted DNAmetabarcoding
analyses of periphyton samples, which 1) provide a more
comprehensive estimate of the diatom species present
within a sample than would be possible with microscopy-
based identification and enumeration (Tapolczai et al. 2019a,
Pérez-Burillo et al. 2020, Kahlert et al. 2021) and 2) reduce
possible bias and variability associated with taxonomist er-
ror (Lee et al. 2019).

Sampling methods
The study sites were located in 2nd- and 3rd-order

streams within the East Fork of the Little Miami River
(EFLMR) watershed (area5 1293 km2) in southwest Ohio,
USA. The watershed experiences a temperate seasonal cli-
mate and has mixed land use with 54% in agriculture. Based
on insights from historical monitoring data, we selected
25 non-nested stream sites (i.e., no site was downstream of
another) to represent a continuous and ~evenly distributed
gradient spanning the range of nutrient concentrations ex-
perienced in the watershed (Smucker et al. 2020). Catch-
ment areas for the sampled site ranged from 16 to 82 km2.

Water chemistry measurements We collected water for
nutrient analyses at each site in a 1-L acid-washed polypro-
pylene bottle. These samples were stored on ice in the dark
until being returned to the lab where they were kept at 47C
in the dark until being analyzed within 24 h (6% of samples)
or were kept frozen (2207C) until analyzing within 21 d
(94% of samples). We used automated wet chemistry meth-
ods and a QuikChem® 8500 nutrient autoanalyzer system
(Lachat Instruments, Milwaukee, Wisconsin) to measure
total ammonia (TNH4), urea, and total reactive P (TRP).
We measured TNH4 with a modified phenolate method
(Smith 2001), and urea with an adjusted brackish water
method using diacetyl monoxime and thiosemicarbazide
in an acid solution (Nelson 2007). Tomeasure TRPwe used
a high throughput method with the standard ammonium
molybdate and antimony potassium tartrate reaction and
ascorbic acid reduction (USEPA 1993, Tucker 2008). To
expedite sampling of all 25 sites closely in time and to co-
ordinate with an existingmonitoring effort, we did not filter
grab samples and reported all nutrient data as total species.
We focused our analyses on the most biologically available
nutrient species: TRP, TNH4, and urea. Nitrate–nitrite was
excluded from the analyses because it is taken up less read-
ily than ammonia and urea (Twomey et al. 2005), and initial
exploratory analysis showed that NO3

– was not associated
with diatom assemblage composition.

We acknowledge that the decision not to filter and to
freeze samples may have introduced both positive and neg-
ative biases tomeasured nutrient concentrations, especially
for P species (Gardolinski et al. 2001). Positive biases may
arise if organic nutrients incorporated into biomass are re-
leased by freezing, thawing, and remineralizing, whereas

negative biases may arise from complexation with mineral
precipitates during the freeze–thaw cycle. However, the
streams in this study have little suspended algal biomass,
and weminimized potential for remineralization by analyz-
ing samples immediately after thawing. The protocols of
this monitoring effort were developed from extensive ob-
servations that quantified the effects of freezing and filter-
ing on measurements of inorganic nutrient species (see
Fig. S1).

Quantitative estimates of the temporal variability of nu-
trient concentrations over different time intervals can be
used to help interpret estimates of the relationships be-
tween diatom assemblage composition and nutrient con-
centrations (see below). The weekly samples collected in
the EFLMR were not frequent enough to estimate variabil-
ity at time intervals shorter than a week, so we used daily
measurements of total P (TP; with more frequent measure-
ments during storm events) for 2 Ohio streams draining ar-
eas similar in size to the streams sampled in this study
(Rock Creek catchment 5 90 km2 and Chickasaw Creek
catchment5 43 km2) to estimate the average temporal var-
iability of P concentrations over time intervals ranging
from 2 to 20 d. These data were collected by the National
Center for Water Quality Research (https://ncwqr.org
/monitoring/), starting in 1983 for Rock Creek and 2008
for Chickasaw Creek up through the present.

Diatom sampling and DNA analysis On each date at each
site, we composited a periphytic diatom sample from 5 rocks
retrieved equidistantly along a 75-m stream reach. On the
surface of each rock, we positioned a 6.7-cm2 plastic guide
and removed the periphyton within the guide by scrubbing
with a firm-bristled brush attached to a cordless drill. We
then used a rinse bottle filled with creek water to spray the
periphyton dislodged by the brush into a slurry. We com-
bined the periphyton slurries collected from each of the
5 rocks into a new 500-mL low-density polyethylene bottle.
Samples were kept on ice in the dark until returning to the
lab, where theywere frozen at2807Cuntil being thawed im-
mediately prior to DNA extraction. After thawing, we fil-
tered samples through sterile, 0.8-lm polycarbonate filters.
We transferred an ~50-mg subsample of filtered periphyton
into a 1.5-mLmicrocentrifuge tube where it was exposed to
liquid N and then ground with a disposable pestle.

Next, we processed ground periphyton samples through
our laboratory workflow for DNA metabarcoding consist-
ing of DNA extraction, PCR amplification, and DNA se-
quencing.We usedDNeasy® PowerLyzer® PowerSoil® kits
(Qiagen, Hilden, Germany) and followed manufacturer’s
instructions to extract DNA, but with an added initial di-
gestion with proteinase K at 567C for at least 2 h. We used
PicoGreen®dsDNAQuantitationReagent (Molecular Probes,
Eugene,Oregon) to quantifyDNA extractions on amicroplate
reader (model HT1; BioTek®, Winooski, Vermont), which
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we normalized to 10 ng/lL for polymerase chain reaction
(PCR). We used PCR and previously described primers
and reaction conditions (Vasselon et al. 2017) to amplify a
portion of the chloroplast gene rbcL. These primers target
diatoms, but occasional amplification of non-target taxa
closely related phylogenetically to diatoms can occur. These
uncertain taxon designations were <0.7% of all sequences.
We conducted 20-lL PCR reactions consisting of 2 lL
10X PCR buffer (with MgCl2), 0.6 lL 25-mM MgCl2, 1 lL
each of the forward and reverse primer cocktails (10 mM;
Table 1), 4 lL 1X BSA, 0.4 lL 10-mM dNTPs, 0.1 lL
Taq® polymerase (Qiagen), 8.9 lL sterile water, and 2 lL
templateDNA. Reaction conditionswere 947C for 150 s, fol-
lowed by 35 cycles of 947C for 30 s, 557C for 1min, and 727C
for 1minwith a final extension of 727C for 10min. The PCR
primers in this round of PCR had 5’ adapter sequences (5’-
ACACTGACGACATGGTTCTACA-3’ and 5’TACGGTA
GCAGAGACTTGGTCT-3’) for use in the 2nd round of PCR
(dual indexing). We ran these PCRs in triplicate for each
template and then pooled and cleaned them (QIAquick®
96 PCR Purification Kit; Qiagen) prior to a 2nd PCR where
we added indexing primers for sequencing on aMiSeq™ se-
quencer (Illumina, San Diego, California). The 2nd round of
PCR had reaction conditions with 8 cycles of 957C for 30 s,
557C for 30 s, and 727C for 30 s followed by a final extension
step of 727C for 5 min. We then used the AMPure XP kit
(Beckman Coulter Life Sciences, Indianapolis, Indiana) to
purify index PCR amplicons, quantified them with Pico-
Green as above, and normalized them in EB buffer (Qiagen).
We pooled index PCR plates into a single sample by combin-
ing 3 lL from each well into a 1.5-mL microcentrifuge tube.
We then used a 500-cycle Illumina MiSeq sequencing kit
(2 � 250) to sequence amplicons following manufacturer’s
protocols.

In order to generate operational taxonomic unit (OTU)
DNA consensus sequences and the number of reads per
OTU per sample, we performed bioinformatic analyses
of the raw data from the MiSeq run. For bioinformatic
analyses, we used USEARCH (version 9.2; https://www
.drive5.com/usearch/manual9.2/; 64-bit; Edgar 2010) on
demultiplexed reads from a single MiSeq DNA sequencing

run. We used Cutadapt (version 1.14; Martin 2011) to
merge paired reads and to remove primers. We excluded
full length sequences shorter than 230 base pairs or with
higher than expected errors based on Phred quality scores.
We dereplicated the remaining sequences and identified
unique sequences. We excluded sequences with <4 obser-
vations in the total sequencing run to reduce the number
of OTUs created by possible sequencing artifacts. We
screened the remaining data for chimeric sequences and
clustered OTUs at ≥97% similarity, which is commonly
used and has good discrimination power and performance
similar to other thresholds ≥92% (Tapolczai et al. 2019b).
We mapped all quality-filtered sequence reads onto these
OTUs. The sequence data has been deposited in GenBank
(BioProject ID: PRJNA592969, http://www.ncbi.nlm.nih
.gov/bioproject/592969).

Ordination of diatom assemblage
We applied non-metric multidimensional scaling (NMDS)

to the diatom OTU� sample matrix to quantify how diatom
assemblage composition varied across samples and with re-
spect to nutrient gradients. We expressed reads for each sam-
ple as the presence or absence of each OTU identified across
all samples and quantified differences between the assem-
blage composition of different samples with the Simpson
pairwise dissimilarity index, a metric thatmeasures turnover
among samples (Baselga 2010). Sorensen dissimilarities
measure both nestedness and turnover, and analyses using
Sorensen were nearly identical to those reported below.
We then mapped diatom assemblages to 4 axes with NMDS
as provided by the function metaMDS in the vegan package
(Oksanen et al. 2012) in R (version 4.0.3; R Project for Statis-
tical Computing, Vienna, Austria). The function metaMDS
fits many ordinations with random restarts to reduce the
possibility that the final ordination solution represents a lo-
cal minimum. The final ordination is also rotated such that
the 1st axis accounts for the greatest proportion of variance
in ordination space (Oksanen et al. 2012). We specified
4 axes in the ordination which yielded a stress of 0.18. Ordi-
nations computed with fewer axes yielded stresses that ex-
ceeded the recommended threshold of 0.2 (Clarke 1993).

Table 1. Polymerase chain reaction primer sequences (Vasselon et al. 2017) used to
characterize diatom assemblage composition in the East Fork of the Little Miami River
watershed, southwest Ohio, USA.

Primer name Sequence Cocktail

Diat_rbcL_708F_1 AGGTGAAGTAAAAGGTTCWTACTTAAA Forward

Diat_rbcL_708F_2 AGGTGAAGTTAAAGGTTCWTAYTTAAA Forward

Diat_rbcL_708F_3 AGGTGAAACTAAAGGTTCWTACTTAAA Forward

R3_1 CCTTCTAATTTACCWACWACTG Reverse

R3_2 CCTTCTAATTTACCWACAACAG Reverse
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Exploratory analysis indicated that position on the 1st NMDS
axis was strongly correlated with nutrient concentrations,
so subsequent analyses focused on factors that predicted
position on this axis.

Estimating diatom–nutrient relationships in space
We used linear regression models to estimate diatom–

nutrient relationships among sites (i.e., in space). First, we
calculated site mean values for all nutrient measurements
(TRP, TNH4, and urea) and for the mean position along
NMDS axis 1 for diatom assemblages observed at each site.
Then, we fit 3 linear regressions with mean NMDS axis 1
scores as the dependent variable and site mean values of
TRP, THN4, and urea as predictors in each of the regres-
sions. To illustrate the effects of including a covariate in the
models, we also fit 3 additional multiple linear regressions
with conductivity included as an additional predictor variable
with each of the 3 nutrient species. Conductivity was selected
as an example covariate in the models because of its known
effects on diatom composition (Potapova and Charles 2003,
Pajunen et al. 2017). Conductivity was not measured during
this study, so we usedmean values of historical data collected
at each site for this illustrative example.

Estimating diatom–nutrient relationships in time
To quantify relationships in time, we estimated linear

relationships between weekly measurements of each nutri-
ent concentration andNMDS axis 1 scores within each site.
Two additional aspects of this phase of the analysis distin-
guish it from the among-site models. First, we specified a
hierarchical structure such that parameters describing the
relationship for each site (slope and intercept) were as-
sumed to be drawn from common normal distributions
consisting of slopes and intercepts from all 25 sites (Gel-
man and Hill 2007). We assumed residual variance was the
same for all sites, as is typical for hierarchical models. The
hierarchical structure reflects the assumption that temporal
relationships estimated in each site were not identical but
that some similarity in responses among sites was expected.

Second, we accounted for differences between the mea-
sured, instantaneous nutrient concentration and the aver-
age nutrient concentration that was relevant to temporal
changes in diatom assemblage composition. More specifi-
cally, weekly grab samples reflect concentrations at the
time of sampling, but the observed diatom assemblage re-
flects a history of nutrient concentrations over some period
of time (Dt) prior to sample collection. The relevant dura-
tion of Dt is not known but may be related to the doubling
time of different diatom species, which has been estimated
in 1 lab study as 2 to 16 d, depending on species character-
istics (e.g., Morin et al. 2008). Other studies of the turnover
in aggregate measures of diatom composition or structure
have observed a similar range of values forDt and suggested
that Dt may also vary with environmental conditions (La-

voie et al. 2008, Smucker and Vis 2011b, Huttunen et al.
2020).

To account for the difference between each instan-
taneous nutrient measurement and the average nutrient
concentration computed over Dt, we applied statistical
techniques typically used to account for measurement er-
ror. Each instantaneous measurement was assumed to rep-
resent the average concentration plus a random error (Car-
roll et al. 2006, Yuan 2007). That is, each instantaneous
nutrient concentration was assumed to be drawn from a
log-normal distribution that was centered on the average
nutrient concentration over Dt. The width of this distribu-
tion can be characterized as the standard deviation of log-
transformed instantaneous nutrient concentrations (SDN),
and this width varies with Dt.

We were interested in identifying a relevant range of val-
ues of SDN that could be used in ourmodel for temporal re-
lationships between diatoms and nutrient concentrations.
To that end, we estimated the relationship between SDN

and Dt with the temporally intensive measurements of TP
collected from Rock Creek and Chickasaw Creek. TP mea-
surements in these sites were collected at least daily, so SDN

could be estimated for shorterDt than the weekly data from
EFLMR.We estimated the SDN of TP for Dt ranging from 2
to 21 d by dividing the daily measurements into windows
corresponding to each value of Dt and computing the SDs
of log-transformed TP (SDN) within each window. Then,
we calculated the mean value of SDN for all windows spec-
ified for a value of Dt. Exploratory analysis indicated that
SDN varied systematically with time of year, so we limited
data fromboth streams to July toOctober tomatch the sam-
pling period for the sites in the EFLMR. Daily data were not
available for TRP, TNH4, or urea in the Chickasaw Creek
data set, so for this analysis we assumed that the range of
SDN of these other nutrient species was comparable to that
of TP.

In contrast to the simple among-site model, a more
complex Bayesian model was needed to represent the hier-
archical structure of the data and to account for the tempo-
ral variability of nutrient concentrations. The complete
model for temporal changes in NMDS axis 1 scores can
be expressed mathematically as follows:

NMDS1i 5 aj i½ � 1 bj i½ �TRPi 1 ei, (Eq. 1)

whereNMDS1i is the 1
st NMDS axis score for sample i; aj[i]

and bj[i] are site-specific model coefficients for site j, corre-
sponding to sample i; TRPi is the average value of TRP for
sample i; and ei is a normally distributed residual error. The
site-specific model coefficients are related to one another by
assuming they are drawn from common, normal distributions:

aj ∼ Normal ma, jað Þ  and  bj ∼ Normal mb, jbð Þ, (Eq. 2)

where the distributions are parameterized by the mean
values, ma and mb, and standard deviations, ja and jb. The
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distribution of instantaneous measurements of TRP is
modeled as a log-normal distribution:

lnðTRPiÞ ∼ Normal½lnðTRPiÞ, SDN �, (Eq. 3)

where TRPi is the instantaneous TRP measurement for
sample i. Based on the results of analyses of data from Rock
Creek and Chickasaw Creek, we fit the model for values of
SDN ranging from 0.1 to 0.5. We fit identical models using
TNH4 and urea as the nutrient species of interest. We used
Rstan (version 2.14.0; Stan Development Team, Cocoa,
Florida) with weakly informative prior distributions speci-
fied for all parameters to fit all Bayesian models. All other
statistical calculations were performed in the R software.

RESULTS
A total of 276 samples with paired nutrient and meta-

barcode data collected at 25 sites were available for analysis.
Across the available data, TRP ranged from 3 to 695 lg/L,
TNH4 ranged from 4 to 86 lg/L, and urea ranged from 1 to
157 lg/L. Ten samples with TNH4 or urea measurements
that were extremely high outliers outside of these ranges

were excluded, leaving a total of 266 samples. In individual
samples, TRP, TNH4, and urea were weakly correlated, but
when correlations were computed based on mean site con-
centrations, the correlations strengthened considerably
(Table 2).

Mean position along the 1st NMDS axis for each site was
strongly associated with mean TRP, TNH4, urea, and con-
ductivity (Fig. 1A–C). In the linear regression models,
slopes (±SE) of the relationships based on standardized val-
ues of TRP, TNH4, and urea were 20.13 ± 0.02, 20.12 ±
0.02, and 20.10 ± 0.02, respectively. The effect of conduc-
tivity on NMDS axis 1 scores was strongest for the multiple
linear regression model that included urea and weakest for
themodel that included TRP (Table 3). Similarly, the slopes
estimated for TRP changed the least between the simple 1-
variable model and the multiple regression model, whereas
the slope for urea changed by the greatest amount.

Analysis of data from Rock and Chickasaw creeks pro-
vided a distribution of SDN of log(TP) for different windows
of time.Mean SDN on log(TP) increased from~0.15 for a 2-d
window to 0.35 for a 21-d window in Chickasaw Creek
(Fig. 2). SDN for log(TP) in Rock Creek followed the same
pattern but reached values of ~0.40 for the longest win-
dows. The increase in SDNwith larger values ofDt likely oc-
curred because of autocorrelation of TPmeasurements over
short time periods, such that TP measurements collected
over short time intervals are more similar than TPmeasure-
ments collected over longer time intervals. Uncertainty in
estimates of mean SDN also increased with Dt because the
number of different windows that could be defined de-
creased as Dt increased. Because of the log transformation
applied to TP data, estimates of SDN can be approximately
interpreted as proportions of the mean value, so an SDN

of 0.1 indicates that over a 2-d window, TP varied about the
mean value by ~10%.

Table 2. Pearson correlation coefficients between nutrient spe-
cies concentrations and conductivity among samples taken at
different times in the East Fork of the Little Miami River water-
shed, southwest Ohio, USA. Correlations among site means
shown in parentheses. Only site mean correlations are shown
for conductivity because conductivity measurements for each
sample were not available (NA). – indicated no data.

TRP TNH4 Urea

TNH4 0.49 (0.80) – –

Urea 0.33 (0.66) 0.47 (0.81) –

Conductivity NA (20.65) NA (20.56) NA (20.47)

Figure 1. Relationships between mean position along the 1st non-metric multidimensional scaling (NMDS) axis, representing varia-
tion in diatom assemblage composition, and mean-site total reactive P (TRP; A), ammonium (TNH4; B), and urea (C) concentrations
in the East Fork of the Little Miami River watershed, southwest Ohio, USA.
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We estimated within-site temporal relationships be-
tween nutrient concentrations and position on the 1st NMDS
axis and used an initial value of 0.3 for the SDN of the nutri-
ent measurements, corresponding to an averaging time of
~1 to 2 wk for soluble reactive P (Fig. 2). The slopes of the
site-specific temporal relationships between standardized
TRP concentrations and position on NMDS axis 1 were all
<0, with a mean value of20.08 ± 0.02 (Fig. 3). Standardized
slopes for temporal relationships betweenTNH4 andNMDS
axis 1 and between urea and NMDS axis 1 both clustered
around 0, with mean values of 0.004 ± 0.010 and 0.00 ±
0.007, respectively.

Within each site, the correction from instantaneous TRP
measurements to a mean TRP measurement (computed
over a time interval, Dt) is manifested as a steeper relation-
ship between TRP and position on the 1st NMDS axis
(Figs 4, S2). The steeper relationship is a typical result of ac-
counting for measurement error in the predictor variable
because instantaneous measurements are distributed more
widely than mean concentrations. Therefore, a line fit to
mean TRPmeasurements is steeper than a line fit to the in-
stantaneous values.

We examined the effects of different assumptions re-
garding the relevant value ofDt by recomputing within-site
relationships for SDN ranging from 0.1 to 0.4, correspond-
ing to the range of SDN estimated for values of Dt from 2 to
21 d. Standardized slopes estimated from temporal and spa-
tial models were statistically indistinguishable when SDN of
TRPwas ≥0.3 (Fig. 5), which is associated with aDt of ≥1 wk
(Fig. 2).

DISCUSSION
Our analysis of field observations of diatom assemblage

composition indicated that variation in periphytic diatom
composition was more strongly associated with TRP than
with urea or TNH4. Furthermore, the similarity in values
of the parameters estimated from temporal, within-site
models and a spatial, among-site model supports our inter-
pretation that the observed relationship was likely to be
causal. The analysis described here improves on efforts to
distinguish between the effects of different nutrient species
in observational data. Estimating the effects of different
nutrient species in observational data is difficult because

elevated concentrations of multiple nutrients often arise
from the same activities in the watershed and are, therefore,
strongly correlated. Here, though, we have demonstrated
that differences in the correlational structure between tem-
porally and spatially resolved data can be used to isolate the
effects of different nutrient species. Differences in mean di-
atom assemblage composition among different sites (i.e.,
across space) were similarly related to gradients of mean
TRP, TNH4, and urea concentrations at each site, but in
the temporal analysis, no relationshipwas observed between
TNH4 or urea and diatom assemblage composition. These
findings suggest that the among-site relationships estimated
for TNH4 and urea most likely arose from the strong corre-
lations between the 3 nutrient species concentrations. Be-
cause of the difficulties in isolating an effect of a particular
nutrient, most previous analyses of observational data have
modeled the effects of nutrients by representing a gradient
of overall nutrient enrichment with a composite indicator
(Hering et al. 2006) or by modeling only 1 nutrient with
the understanding that it represents an overall nutrient gra-
dient (Yuan 2010). The present analysis offers an approach
that can be used to disentangle the relative effects of differ-
ent nutrient species.Wefirst discuss our findings in the con-
text of current understanding of the effects of nutrients on
diatoms in flowing waters and then consider the different
sources of uncertainty in our analysis.

Effects of nutrients on diatoms
The present findings are broadly consistent with the idea

that freshwater ecosystems are more limited by P than N,
but much of the research examining the relative effects of
P and N focuses on bulk algal growth rates (Francoeur et al.

Table 3. Mean standardized regression coefficients for site-
mean models of relationships between diatom assemblage com-
position and nutrient species 1 conductivity in the East Fork
of the Little Miami River watershed, southwest Ohio, USA.
SE is the standard error on each of the coefficients.

Model Nutrient Conductivity SE

TRP 1 conductivity 20.110 0.035 0.019

TNH4 1 conductivity 20.091 0.056 0.020

Urea 1 conductivity 20.068 0.074 0.021

Figure 2. Mean SD of log-transformed total P (TP) esti-
mated from daily TP measurements from Rock Creek (open
circles) and Chickasaw Creek (filled circles), Ohio, USA, in the
indicated window (d) size. The Rock Creek catchment area is
90 km2 and the Chickasaw Creek catchment area is 43 km2.
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1999) rather than the species composition response consid-
ered here. The variation in species compositionwith changes
in TRP observed in the present data set may reflect differ-
ences in the competitive balance among species (e.g., Passy
2007), but elucidating the mechanism by which TRP alters
this balance is beyond the scope of the present study. Some
possible mechanisms include differences in the efficiency of
uptake kinetics among species (Smith and Kalff 1982) or dif-
ferences in the morphological characteristics of diatoms (e.g.,
prostrate vs stalked forms) that affect mass transfer rates for
nutrients (Dodds and Biggs 2002, Larned et al. 2004).

The weak temporal relationship between diatom assem-
blage composition and TNH4 and urea concentrations may
have occurred because rapid conversion and turnover of
these N species limited our ability to detect a signal from
grab samples (McCarthy et al. 2013, Hampel et al. 2019).
In addition to direct biotic uptake of ammonia (Webster
et al. 2003), extracellular enzymes can quickly convert urea
to NH4

1 and NH4
1 to NO3

– under oxic conditions (Sinsa-
baugh and Follstad Shah 2012). These processes occur in
both the hillslope soils that drain to streams as well as the
stream hyporheic and near-bed environments (Wymore
et al. 2019). As a result, NO3

– concentrations in streams
draining impacted watersheds are often 2 orders of magni-
tude greater than NH4

1 and urea, except when discrete
sampling events coincide with a fertilizer runoff event or
are affected by a point source discharge (Glibert et al. 2005).
It is also possible that N saturation was occurring in the
studied streams because of the relatively large N mass in
these streams and the constant additions to the NO3

– pool

from lateral leaching flows and upwelling groundwater
(Earl et al. 2006). These high concentrations would dilute
the signal from biological uptake and account for the weak
spatial and temporal effects of NO3

– on diatom assemblage
found in previous studies (Mulholland et al. 2008) and ob-
served in early exploratory analyses conducted in this study.

N still likely affects stream biological communities, espe-
cially when considering larger-scale studies and responses
other than diatom assemblage composition. For example,
in a largemesocosm study, increasedN concentrationswere
found to have a greater combined effect on stream periph-
yton composition and function than increased P (Costello
et al. 2018). Also, in a bioassessment survey of the EFLMR,
total Kjeldahl N was identified as the strongest correlate
with biological index scores based on the stream fish com-
munity (Ohio EPA 2014). Indeed, the management plan
for the EFLMR concluded that both P andN should beman-
aged as causes of organic enrichment (Ohio EPA 2020).

Sources of uncertainty
The effect of variation in TRP on diatom species compo-

sition was consistent between temporal and spatial analy-
ses, but uncertainties remain. First, our estimates of the ef-
fect of averaging time on the relationship between TRP and
diatom species composition is comparable to other studies,
but we accounted for averaging time by incorporating an
estimate of the variance of TRP in our statistical model,
and converting this variance to averaging time is uncertain.
Temporal models that were fit using an SDN associated

Figure 3. Distributions of slopes (Bayesian model) between standardized nutrient concentration and non-metric multidimensional
scaling axis 1, representing variation in diatom assemblage composition, estimated for changes in time at each site in the East Fork
of the Little Miami River watershed, southwest Ohio, USA, with the SD of log-transformed instantaneous nutrient concentrations 5
0.3. Dashed vertical line shows slope 5 0. Vertical line segments that define each box correspond to the 25th, 50th, and 75th percen-
tiles of the plotted distributions. Left horizontal line segment (whisker) extends to smallest value that is within a distance of 1.5� the
interquartile range from the left edge of the box. Right whisker extends to greatest value that is within a distance of 1.5� the
interquartile range from the right edge of the box. Values outside the range defined by the whiskers are shown with open circles.
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with at least a 1-wk averaging time yielded relationships that
were comparable to the among-site model. This averaging
time is broadly similar to durations that have been estimated
elsewhere, although the range of durations is wide (Larned
2010). For example, laboratory studies of the response of di-
atoms to P enrichment suggested that changes occur in 6 d
(Pan and Lowe 1994). In field data, the strongest correla-
tions between diatom indices or metrics and P concen-
trations were observed using a 5-wk average, with shorter
integration times in less eutrophic rivers (Lavoie et al. 2008).
Stronger correlations were also observed using summer
mean nutrient concentrations rather than same-day concen-
trations (Smucker and Vis 2011b). Differences in response
times associated with initial nutrient concentrations have
also been observed in translocation experiments, in which
diatoms from a high nutrient environment are moved to a
low nutrient environment, and vice versa. In 1 of these ex-
periments, diatom assemblage structure changed in 1 wk
when nutrient concentrations increased across treatments
but required 4 wk to respond when nutrient concentrations
decreased across treatments (Lacoursière et al. 2011). In a
similar study, diatoms from different high-nutrient streams
were transferred to a low-nutrient stream, and differences
in assemblage structure were quantified with a bioassess-
ment index. Here, up to 60 d were required before the dia-
tom index values in the transferred samples were compara-

ble to those observed in the low-nutrient stream (Rimet et al.
2009). The structural changes in the diatom assemblage
were characterized by changes in growth form from stalked
diatoms (in high nutrient, dense biofilms) to adnate growth
forms. Finally, analysis of high-frequency nutrient data sug-
gested that 7 to 21 d prior to sampling is the relevant time
scale for predicting diatom assemblage responses to changes
in P concentration (Snell et al. 2014).

Averaging time is included in the current analysis only in
terms of its effect on SDN, and the relationship between av-
eraging time and SDN can vary. For example, we assumed
that the average concentration over Dt characterized nutri-
ent conditions, but pulsed nutrient loads and the timing of
periods of elevated concentrations may be relevant to the
diatomassemblage (Litchman et al. 2009), and nutrient con-
centrations collected more frequently to capture these
shorter-term events may reveal greater levels of variability
than observed with the daily data used here. We also ob-
served that the relationship between SDN and averaging
time depends on the time of year (results not shown) and
on the size of the stream (Fig. 2). Studies that more closely
examine the effects of these factors and their effect on SDN

and averaging time would require temporally intensive nu-
trient measurements matched with periphyton samples.

The 2nd source of uncertainty we faced in this study
was the influence of covariates on the analysis. We were

Figure 4. Example of the relationship between total reactive
P (TRP) and non-metric multidimensional scaling (NMDS) axis 1
position, representing variation in diatom assemblage composi-
tion, for 1 site in the East Fork of the Little Miami River water-
shed, southwest Ohio, USA. Solid line represents the estimated
relationship based on the Bayesian modeled mean TRP based
on an SD of log-transformed instantaneous nutrient concentra-
tions 5 0.3. Gray shading represents the 90% credible interval
on the estimated relationship. Dashed line represents a simple
linear regression fit to data. Open circles represent the observed
data.

Figure 5. Estimates of within-site slopes of relationship be-
tween standardized total reactive P (TRP) and non-metric
multidimensional scaling (NMDS) axis 1 for different SDs of
log-transformed instantaneous nutrient concentrations (SDN)
at sites in the East Fork of the Little Miami River watershed,
southwest Ohio, USA. Open circles: mean within-site slope for
indicated SDN. Line segments represent the 90% credible in-
terval. Horizontal dashed line and gray shading represent esti-
mated mean and 90% confidence limits for standardized slope
based on the spatial model for TRP.
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interested in accurately estimating the relationship between
nutrient concentrations and position on NMDS axis 1, and
for a covariate to bias the estimate of this relationship it must
both covary with nutrient concentrations and exert its own
effect on diatom composition. Factors that are correlated
with nutrients but exert no influence on diatom composi-
tion would not alter the estimated relationship, whereas fac-
tors that are correlated with NMDS axis 1 but not with nu-
trients would reduce residual variability but would not
change the estimated slopewith nutrients. Conductivity pro-
vides one example of a potentially confounding variable be-
cause it may be correlated with nutrients both temporally
and spatially (Biggs and Close 1989, Villa et al. 2019) and is
known to influence diatom assemblage composition (Smucker
and Vis 2011a). So, is it possible that the confounding effect
of conductivitymight alter our conclusion regarding the ev-
idence for a causal relationship between TRP and diatom
assemblage composition? Ideally, we would test for this
possibility by including conductivity as a covariate in the
spatial and temporal models relating diatom composition
to TRP. However, in the present study, conductivity mea-
surements were not collected, and we could only assess the
effects of conductivity in the spatial model. Inclusion of his-
torical mean values of conductivity in the spatial model in-
dicated that conductivity only exerted a weak influence on
the estimated relationship between diatom composition
and TRP. In our study, the coefficient of variation among
sites for mean TRP concentrations was ~4� the coefficient
of variation of mean conductivities. Studies of temporal
variation within sites have found that the difference in coef-
ficients of variation between different P species and conduc-
tivity were substantially greater than the differences among-
site observed here (Cattaneo and Prairie 1995,Haggard et al.
2007), hence, conductivity is less likely to alter relationships
between TRP and diatom composition in the temporal model.
From these insights we conclude that covariation between
TRP and conductivity is not likely to weaken the evidence
for a causal effect of TRP on diatom composition.

Other confounding variables are possible, but for these
variables to influence our findings, they would have tomeet
the same requirements of being associated with TRP and
independently affecting diatom composition. Elevated nu-
trients are correlated with increased agricultural land use in
the EFLMR, so other factors that influence diatoms and
that originate from increased agricultural land use are po-
tential candidates for confounding, such as increased herbi-
cide concentrations (Munn et al. 2018) and increased sus-
pended sediment. Similarly, streamflow is often associated
with TRP concentrations (Stenback et al. 2011) and can di-
rectly influence diatom composition (Cardinale et al. 2005).
For these parameters, we lacked measurements to directly
assess their effects; therefore, we cannot conclusively estab-
lish a causal relationship between diatom composition and
TRP based only on this study.

The analysis approach used here is particularly impor-
tant to better understanding the autecology of different di-
atom species, and it highlights a novel and effective applica-
tion of DNA metabarcoding to understand nutrient effects
on diatoms. Analyses of diatom autecology often begins by
examining the relationship between assemblage composi-
tion and environmental gradients to determine which fac-
tors can be analyzed to determine species autecology. Here,
we have described an approach to more specifically identify
environmental variables that are causally associated with
the occurrence of different diatom species—information that
can help guide subsequent analyses of species–environment
relationships. From a broader perspective, the results of this
analysis highlight the possible insights that can be gained
from carefully designed field observations, and we hope that
this work stimulates similar studies. Acquiring a fuller under-
standing of the effects of different anthropogenic stressors in
stream ecosystems likely requires a synthesis of laboratory
and field observations. Here, we have shown that quantitative
estimates of biological effects from field observations are pos-
sible, and these types of analyses may facilitate stronger com-
parisons between field and laboratory studies.
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