Simplified random forest models predict reference-
condition water chemistry as well as more
complex models
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Abstract: Elevated nutrient concentrations and increased salinization threaten the ecological integrity of freshwa-
ter habitats worldwide. Many waterbodies are experiencing continued or worsening water quality despite decades of
monitoring and remediation efforts. Understanding the extent to which water quality has been impaired requires
that we compare observed water-quality measurements with naturally occurring benchmark values. Several ap-
proaches have been used to estimate these benchmarks, but many of these approaches provide only a single value
for a given region, which will typically either under- or overestimate reference conditions at individual sites. Predic-
tive models for estimating site-specific reference conditions exist for some water-quality indicators, but their per-
formance in terms of accuracy, precision, or coverage can limit their use. Furthermore, models can be difficult to
implement if they rely on predictors that are not readily available. In this study, we attempted to improve existing
random forest models used to predict naturally occurring, site-specific spatial variation in levels of specific conduc-
tivity (SC) and concentrations of total N (TN) and total P (TP). We predicted that we could improve model perfor-
mance and ease of implementation by training models on larger datasets and using predictor variables from a com-
mon, nationally available dataset. We compared predictions from the revised models with predictions made by the
original set of models at both reference and test sites. In addition, we compared 2 methods of estimating upper pre-
diction limits that could be used to set site-specific benchmarks and compared these site-specific benchmarks with
regional benchmarks. The performance of the revised SC, [TN], and [TP] models were similar to that of the original
models, but the ease of implementation was greatly improved through the use of a nationally available dataset of
watershed-scale predictors. Site-specific and regional benchmarks differed considerably, with regional benchmarks
being higher for SC and lower for TN and TP than site-specific benchmarks derived from the models. Our results
suggest that site-specific predictive water-chemistry models based on easily obtainable predictors from a nationally
available dataset can perform as well as those based on predictors that require more advanced geographic informa-
tion system analysis.
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INTRODUCTION

Water-quality degradation has profoundly altered the eco-
logical integrity of streams and rivers across the globe (Mey-
beck 2004, Lintern et al. 2018, Akhtar et al. 2021). For decades,
the United States and other countries have used ecological
(e.g., water quality and aquatic biota) assessments to inform
the management of freshwater ecosystems (Keiser and Sha-

piro 2019). However, many countries are still experiencing
continued or worsening water quality despite decades of mon-
itoring and remediation (Schwarzenbach et al. 2010, Stets
et al. 2020). Understanding the extent to which water qual-
ity has been impaired requires that we assess whether ob-
served conditions differ from the range of natural variation
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expected to occur in the absence of human-caused altera-
tion (Hawkins et al. 2010, Soranno et al. 2011).

Many assessment programs use minimally or least-
disturbed reference sites to establish benchmarks for in-
ferring the condition of other sites (Stoddard et al. 2006).
These benchmarks are often derived at regional scales (i.e.,
a common benchmark is applied everywhere within a re-
gion; USEPA 2000, Suplee et al. 2007, Herlihy and Sifneos
2008), but site-specific benchmarks are more effective in
distinguishing human-caused alterations from naturally
occurring variation, thus minimizing type I and type II er-
rors of inference (Hawkins et al. 2010, Ohlendorf et al.
2011, Olson and Hawkins 2013, van Dam et al. 2017). Re-
gional benchmarks do not account for environmental con-
ditions (e.g., climate, lithology, chemistry) that can vary
among sites within regions and affect water chemistry. More-
over, benchmarks should be set at the scale at which man-
agement is applied—individual water bodies. Site-specific
benchmarks are especially needed in heterogeneous regions
where application of single, regional benchmarks is likely to
be either under- or overprotective. Regional benchmarks often
lack the precision and accuracy necessary to set appropriate
numerical criteria for water-quality constituents (Hawkins
etal. 2010, van Dam et al. 2017). Thus, approaches are needed
to easily set site-specific benchmarks based on readily avail-
able environmental data.

Site-specific benchmarks are typically set by developing
predictive models from observations made at a series of
reference-quality sites (Hawkins et al. 2010, van Dam et al.
2019). Models based on machine learning algorithms (e.g.,
random forests, boosted regression trees) appear to be espe-
cially well suited to such tasks (Lek et al. 1999, Shen et al.
2020, Zhu et al. 2022, Yan et al. 2024). For example, random
forest models have been developed to predict site-specific
background levels of specific conductivity (SC) (Olson and
Hawkins 2012, Le et al. 2019, Olson and Cormier 2019)
and concentrations of total N (TN) and total P (TP) (Olson
and Hawkins 2013) based on variation in a set of naturally
occurring landscape features (e.g., catchment slope, soil
erodibility) obtained from geographic information systems
(GIS). Site-specific predictions derived from these models
usually represent an improvement over regional benchmark
approaches, but the predictions can still be imprecise (par-
ticularly for [TN] and [TP]), limited to sites within a partic-
ular range of naturally occurring conditions (e.g., applicable
only to sites within a specific elevation range), or derived
from models that use temporally dynamic predictor variables.
In the latter case, the use of temporally dynamic variables
can lead to shifting baseline conditions (i.e., when reference
conditions are adjusted for the effects of a human-caused
factor such as climate change rather than anchored at a stan-
dard period in the past). In addition, some of the predictor
variables that these models require are difficult to calculate
by anyone other than advanced GIS users and are sometimes

not reproducible because GIS software is not designed to re-
cord all of the tasks the original developer performed. Con-
sequently, there is a need for temporally anchored models
that can accurately and precisely predict reference condi-
tions for SC, [TN], and [TP] across a wider range of naturally
occurring site conditions.

Predictions of site-specific reference conditions have lit-
tle utility if their accuracy and precision are not known. To
establish useful site-specific benchmarks, model predic-
tions should include measures of prediction uncertainty
(Olson and Hawkins 2013). Such uncertainty can arise
from a myriad of sources, such as error in measuring pre-
dictor values (e.g., site elevation, watershed area), error in
measuring the response variable (e.g., [TN] and [TP]),
and imperfect model structure (i.e., the model inaccurately
represents the response—predictor relationship). Predic-
tion uncertainty has often been quantified by estimating
prediction intervals (PIs) (Gibbons 1987, Olson and Haw-
kins 2013, Zhou et al. 2022), the upper limit (PL) of which
represents the highest probable naturally occurring water-
chemistry concentration at a site. Several methods for esti-
mating PIs have been proposed, but no consensus exists re-
garding how PIs should be calculated for random forest
models. This lack of consensus adds further uncertainty
to identifying the upper limits of expected conditions for
such models.

Our main objective was to improve the random forest
models currently being used by some federal and state
agencies in the western United States (hereafter referred
to as the original models) to predict reference conditions
for SC (Olson and Hawkins 2012, Olson and Cormier
2019), [TN], and [TP] (Olson and Hawkins 2013). Second,
we wanted to assess how strongly the method of calculating
PIs affected inferences of water-quality impairment. Third,
we wanted to determine whether site-specific benchmarks
were less or more protective of individual waterbodies than
regionally derived benchmarks such as those used by the
United States Environmental Protection Agency’s (EPA)
National Rivers and Streams Assessment (NRSA). Fourth,
we expected that we could improve model performance
and broaden the applicability of the original models to a
larger environmental space than covered by the original
set of reference sites by retraining the models on an ex-
panded set of reference sites. Fifth, we expected that we
could improve the ease of conducting assessments (i.e.,
eliminate the need for advanced GIS analyses) by using re-
producible predictor variables contained in an easily acces-
sible and nationally available dataset. Sixth, we wanted to
alleviate shifting-baseline issues by using static predictor
variables that temporally anchored reference conditions
to a fixed window of time. Last, we expected that regional
benchmarks would be either over- or underprotective rela-
tive to site-specific benchmarks and thus more prone to
type I and II errors than site-specific benchmarks.



METHODS
Reference and test-site selection

We compiled observations of SC, [TN], and [TP] from a
network of reference sites distributed across the western
United States. Candidate reference sites were initially iden-
tified by the agency that sampled the sites (e.g., United
States Geological Survey [USGS], EPA, state agencies).
These candidate sites were later screened to ensure that
their respective watersheds were least disturbed (sensu
Stoddard et al. 2006) by human activity (Olson and Haw-
kins 2012, 2013, Olson and Cormier 2019). Sites were first
screened to verify that their catchments had <10% agricul-
ture or urban land use (Olson and Hawkins 2013). In addi-
tion, aerial photographs and maps were inspected for other
evidence of human impacts (e.g., mines, ranches, clearcuts).
We further screened the original sets of 1391, 665, and
752 reference sites from Olson and Hawkins (2012, 2013)
used to model SC, [TN], and [TP], respectively, to minimize
potential problems of data independence. Some of the orig-
inal reference-site observations occurred on the same stream
segment, so we selected just 1 sample from each segment
when retraining models. After removing duplicate sites,
we were left with 1359, 617, and 736 of the original observa-
tions used in the SC, TN, and TP models, respectively. How-
ever, we were able to add additional reference sites for all
3 models by including sites from Olson and Cormier (2019)
and other reference-quality sites from across the western
United States (J. R. Olson, California State University, Mon-
terey Bay, California, personal communication). As a result,
we were able to train the revised SC, TN, and TP models on
1912, 699, and 966 observations (Fig. 1A—C). New reference-
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site observations for the SC model were located in every
western state (Fig. 1A), but new TN data were available only
from Montana (Fig. 1B). For the revised TP model, we were
able to add new observations from Oregon, Nevada, Utah,
and Montana (Fig. 1C).

In addition to selecting reference sites for model calibra-
tion, we selected >1500 test sites in the western United
States to evaluate the effects of modeling decisions on infer-
ences of water-quality condition. All test sites were sam-
pled as part of the Bureau of Land Management’s (BLM)
Assessment, Inventory and Monitoring (AIM) Strategy
(Toevs et al. 2011). The AIM program uses standardized
and consistent methods to assess the condition of natural
resources on BLM lands. The AIM test sites included sites
sampled as part of spatially balanced survey designs plus
some targeted locations of specific management interest
to the BLM. Sites included both wadeable and nonwadeable
perennial stream and river reaches represented in the Na-
tional Hydrography Dataset (NHD) (BLM 2015). Not all
test sites had observations for all 3 water-quality constitu-
ents, but we were able to identify 1957, 1539, and 1547 test
sites with SC, TN, and TP data, respectively.

Specific conductivity and nutrient concentration data
SC (normalized to 25°C), [TN], and [TP] at reference
sites were taken directly from the Olson and Hawkins
(2012, 2013) and Olson and Cormier (2019) datasets or
downloaded from the National Water Quality Monitor-
ing Council Water Quality Portal (NWQMC et al. 2021;
https://www.waterqualitydata.us). Reference-site data for
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Figure 1. Maps depicting the distribution of the reference sites used to develop predictive models for specific conductivity (SC; n =
1912) (A), total N (TN; n = 699) (B), and total P (TP; n = 966) (C). Reference sites used in random forest models currently being
used by some federal and state agencies in the western United States (original models) are shown as open circles, and newly added
sites included in retrained models (revised models) are shown as plus signs. Reference-site data for SC ranged from 1965 to 2016, and
data for TN and TP ranged from 1973 to 2015 and 1973 to 2019, respectively.


https://www.waterqualitydata.us

268 | Random forests predict water chemistry D. Nelson et al.

SC ranged from 1965 to 2016, and data for TN and TP ranged
from 1973 to 2015 and 1973 to 2019, respectively. SC was
measured in the field or laboratory, depending on the sam-
pling agency. [TN] at the original set of reference sites was
measured from persulfate digestion and colorimetry or the
sum of Kjeldahl [N], [NO3; ], and [NO, ] estimates. For the
added reference sites, we only used [TN] measured from
persulfate digestion and colorimetry because of uncertainty
about what other methods were used and reported in the
data portal. [TP] was measured from unfiltered water samples
following persulfate digestion and colorimetry. We ensured
that all data were standardized to the same units (uS/cm for
SC and pg/L for [TN] and [TP]).

We assigned all reference-site observations to their asso-
ciated stream segments in the NHD Plus V2 (NHDPlus V2;
McKay et al. 2012). Each stream segment has a unique com-
mon identifier called a COMID. To assign COMIDs to sites,
we spatially joined sample locations (i.e., points) to NHDPlus
V2 catchment polygons for each stream segment. If >1 sam-
ple was collected from the same COMID segment, we ran-
domly selected 1 of the sites for analysis and dropped the
other sample(s). However, we checked the randomly selected
samples to ensure that concentrations fell within an expected
range of values for that site. For example, if a site was sam-
pled 5x over several years and 4 of those 5 sample concentra-
tions were similar but 1 was much different than the other 4,
we randomly selected a sample from 1 of the 4 similar sam-
ples because these values were most likely to represent typical
background concentrations. If [TN] or [TP] measurements
were below the limits of detection, we used the limit of detec-
tion as the final concentration. Limits of detection differed by
agency or analyzing laboratory and ranged from 1 to 10 pg/L
for [TP] and 5 to 60 pg/L for [TN]. There was no limit of de-
tection for SC. Spatially modeling water-chemistry data with
multiple detection limits across regions can potentially affect
model performance and bias predictions (Fu and Wang 2011).
Therefore, we explored whether replacing all limit-of-detection
values with the highest limit-of-detection value in the com-
bined datasets (e.g,, a [TP] value of 3 pg/L replaced with a value
of 10 pg/L) would affect model performance. There was no
appreciable difference in performance between models that
used these rolled-up limit-of-detection values and those that
used the original values. However, models that were trained
on the original data were more accurate in predicting lower
concentrations than those that used rolled-up values. We
therefore chose to use the original, variable limit-of-detection
data when developing the models. Sites at which nutrient con-
centrations were at the limits of detection (e.g., 1-10 pg/L
for TP) were distributed throughout the study area but did
show some bias with regard to geography. For example, sam-
ples collected from the state of Washington had a relatively
high proportion of measurements below the limit of detec-
tion (Fig. S1).

We downloaded publicly available data for test sites from
the BLM National AIM Lotic Indicators Hub (https://gbp

-blm-egis.hub.arcgis.com/pages/aim), covering the years
2013 to 2021. Specific conductivity was measured by BLM
personnel in the field with YSI sondes (Yellow Springs In-
struments, Yellow Springs, Ohio) at each site. TN and TP
samples were processed by the Utah State University (USU)
Aquatic Biogeochemistry Laboratory (Logan, Utah). [TN] was
measured from unfiltered grab samples following a potas-
sium persulfate digestion and a cadmium reduction. The USU
lab’s limit of detection for [TN] was 12 pg/L. [TP] was mea-
sured from unfiltered grab samples following potassium per-
sulfate digestion, an ascorbic acid molybdenum reaction, and
colorimetric analysis. The USU lab’s limit of detection for
[TP] was 15 pg/L.

Candidate predictor variables

We appended StreamCat (https://www.epa.gov/natio
nal-aquatic-resource-surveys/streamcat-dataset#access
-streamcat-data; Hill et al. 2016) variables to sites based on
NHD COMID identifiers. First, we used the StreamCatTools
package (Weber et al. 2024) in R (version 4.2.0; R Project for
Statistical Computing, Vienna, Austria) to append all avail-
able StreamCat variables to sites. Before modeling, we ex-
cluded all catchment-level (sensu Hill et al. 2016) variables
because initial analyses indicated that watershed-level pre-
dictors performed better than catchment-level predictors.
Hill et al. (2016) define a catchment as the portion of the wa-
tershed laterally adjacent to the stream reach that drains di-
rectly into the reach. Next, we eliminated StreamCat vari-
ables that characterize anthropogenic impacts (e.g., dam
density, coal mine density, road density) because we were
only interested in modeling natural variation among sites. Fi-
nally, we eliminated variables that likely had little influence
on SC and nutrient concentrations in streams (e.g., predicted
wetted width of a stream). In addition to StreamCat vari-
ables, we included the day of the year (DOY) on which sam-
ples were collected for TN and TP models because nutrient
concentrations can vary seasonally. We were unable to cal-
culate DOY for the SC model because the sampling date
was missing for most of the original reference sites used by
Olson and Hawkins (2012). Overall, we ended up with 45 can-
didate predictor variables for the SC model and 46 candi-
date predictors for the TN and TP models (see Table S1
for a complete list and description of candidate predictor
variables).

Model development and performance

We used random forest modeling (Breiman 2001) to
predict spatial variation in reference-condition levels of
SC, [TN], and [TP] at the revised reference sites. First, we
used the vsurf procedure (with default settings) in the
VSURF package (version 1.2.0; Genuer et al. 2015) in R to
select a parsimonious and interpretable set of predictors
for each model. The vsurf procedure is a stepwise feature-
selection method based on random forests with the purpose
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of removing redundant predictors from a dataset. It assesses
variable importance from the increase in mean square error
(MSE) when a given variable is permuted. The importance
of the variable increases as the difference in MSE between
the model using the unpermuted variable and the model us-
ing the permuted variable increases. Overall, an increase in
MSE indicates a decrease in model performance. Next, we
implemented random forest modeling with the R package
randomForest (version 4.7-1.1; Liaw and Wiener 2002) set
to default settings. For each water-chemistry constituent,
we included those predictors identified by the vsurf proce-
dure as being important. We then used the random forest
out-of-bag observations to assess model performance in
terms of > values, the Nash—Sutcliffe model efficiency coef-
ficient (NSE), root mean square error (RMSE), and mean ab-
solute error (MAE) from the linear regression of observed
values on predicted values. NSE is a measure of the corre-
spondence between observations and their predictions. If
NSE = 1, the predictions perfectly correspond with the ob-
servations, whereas if NSE = 0, the model has the same ex-
planatory power as the mean of all observations. When NSE
<0, model performance is worse at making predictions than
the mean of observations. RMSE is a measure of the average
distance between a model’s predicted values and the obser-
vations and is calculated as the SD of model residuals. MAE
is a measure of how close the predictions are to the observa-
tions. Both RMSE and MAE are useful in evaluating a model
because they are computed and reported in the same units as
the dependent variable. RMSE and MAE are also negatively
oriented metrics, meaning that lower values indicate better
model performance than higher values.

We compared the performance of the original and re-
vised models for both reference and test sites. First, we ob-
tained model predictions for the original set of reference
sites used by Olson and Hawkins (2012, 2013) and Olson
and Cormier (2019). We were not able to make predictions
for the added reference sites with the original models be-
cause of our inability to reliably duplicate some predictor
values included in those models (e.g., mean channel slope
for the original TP model). Therefore, our comparisons of
revised vs original model predictions for reference sites are
limited to the original sets of reference sites. Next, we ap-
pended the StreamCat variables selected for each model to
test sites based on NHD COMID identifiers and used the re-
vised models to make predictions of SC, [TN], and [TP] at
test sites. The BLM’s AIM program has used the original
predictive models (Olson and Hawkins 2012, 2013) to set
site-specific benchmarks (i.e., reference conditions) for SC,
[TN], and [TP] across the western United States. Therefore,
predicted reference values for SC, [TN], and [TP] based on
the original models were already available for many of the
test sites. We used Pearson’s correlation coefficient to assess
the association between original model predictions and re-
vised model predictions. We then used reduced major axis
regression to regress the original model predictions (y-axis)

Volume 44 September 2025 | 269

against the revised model predictions (x-axis). Based on the
reduced major axis regression results, we assessed whether
the slope of the regression line was equal to 1 based on
the 95% Cls around the slope. A slope <1 indicates that,
on average, the revised model overpredicts relative to the
original model at lower values and underpredicts at higher
values. A slope >1 indicates that the revised model generally
underpredicts relative to the original model at lower values
and overpredicts at higher values.

Identifying sites outside reference-site
environmental space

Extrapolating beyond the environmental conditions
represented in the training dataset can lead to misleading
inferences. To mitigate this risk, we assessed whether each
test site fell within the naturally occurring environmental
space defined by the reference sites. To identify test sites
with environmental characteristics that were outside the
environmental space defined by the reference sites, we
used the nearest-neighbor approach developed by Vander
Laan and Hawkins (2014). Briefly, we chose 5 environmen-
tal variables that broadly characterized spatial variation in
naturally occurring environmental conditions across the
study region: watershed area (WsAreaSqKm), elevation
(ElevWs), maximum temperature (Tmax8110Ws; 30-y
normal maximum temperature), minimum temperature
(Tmin8110Ws; 30-y normal minimum temperature), and
precipitation (Precip8110Ws; 30-y normal mean precipita-
tion). See Table S1 for descriptions of each variable. We
then standardized the 5 variables by scaling between mini-
mum and maximum values observed at reference sites. We
calculated multivariate Euclidean distances between each
reference site and all other reference sites based on the
standardized values. Next, we calculated the mean Euclid-
ean distance of each reference site to the 10 nearest refer-
ence sites and used the 90 percentile of this distribution
as a threshold for defining whether a test site was outside
reference-site environmental space. We applied this test
to all candidate test sites by calculating the mean distance
of each test site to the 10 nearest reference sites, and we
flagged a test site as an outlier if the mean distance ex-
ceeded the 90™ percentile threshold. We removed test sites
flagged as outliers from the test dataset before comparing
model predictions from the original and revised models.

To determine if the revised models can be applied to a
larger number of test sites than the original models, we per-
formed the above procedure based on both the revised set of
reference sites and the original set of reference sites. We
compared the number of outliers identified based on the re-
vised set of reference sites, with the number of outliers iden-
tified based on the original set of reference sites. To further
test whether the revised models assessed a larger range of
naturally occurring site conditions than the original models,
we calculated the % increase in the range of values for the
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same 5 environmental predictor variables used to assess
reference-condition environmental space.

Using prediction intervals to set
site-specific benchmarks

We compared 2 approaches to derive PIs for each of the
revised random forest models. First, we derived PIs from
quantile regression forests (QRFs). QRFs are a generaliza-
tion of random forests that can be used to empirically de-
rive prediction intervals (Hengl et al. 2018). When used for
regression, random forest models provide an accurate ap-
proximation of the conditional mean of a response vari-
able, given specific values of the predictor variables. QRFs,
on the other hand, estimate conditional quantiles, not just
the mean. We used QRF to predict the 95" percentiles of
the SC, [TN], and [TP] values at test sites. We implemen-
ted QRF with the quantregForest package (version 1.3-7;
Meinshausen 2024) in R.

In addition to the QRF method, we derived PLs from the
simple empirical error (SEE) method (Olson and Hawkins
2013). Briefly, the SEE method involves bootstrapping the
residuals from the reference data and adding each boot-
strapped residual to the prediction to create an empirical
distribution of the prediction + error. For each test-site
prediction, we sampled the residuals 500x with replace-
ment and added each sampled residual to the prediction
to produce a distribution of the prediction + error. We
then chose the 95™ percentile of that distribution as the
upper PL for that prediction. We used boxplots to visually
compare upper PLs for each water-quality indicator and
used paired Wilcoxon rank-sum tests to assess whether
upper PLs differed between the QRF and SEE methods. We
also compared these 2 approaches by calculating the num-
ber of test sites that exceeded the 95™ percentile values for
each approach. We used the 95™ percentile as a threshold
to illustrate differences between the 2 approaches, but we
are not necessarily advocating its use in a formal monitor-
ing or regulatory context.

Comparing site-specific and regional benchmarks

We compared site-specific benchmarks (i.e., 95" per-
centiles) derived from the QRF and SEE methods with re-
gional benchmarks used by the EPA’s NRSA. First, we allo-
cated test sites to 1 of the 4 Omernik level III ecoregions in
the study area. Next, we calculated the percentage of sites
within each ecoregion that exceeded regional NRSA, SEE-
derived, and QRF-derived benchmarks. Regional NRSA
benchmarks for SC, [TN], and [TP] were obtained from
USEPA (2023). Regional benchmarks for SC were set to ei-
ther 1000 or 2000 pS/cm, depending on the ecoregion, and
were largely based on best professional judgment (USEPA
2023). Regional benchmarks for [TN] and [TP] were de-
rived by the EPA as the 95 percentile of the reference dis-
tributions for each ecoregion. Regional benchmarks for

[TN] ranged from 249 to 1069 pg/L, and regional bench-
marks for [TP] ranged from 41 to 127 pg/L (USEPA 2023).

RESULTS
Reference and test sites

Overall, test-site watersheds contained lower percent-
ages of forested land cover and higher percentages of urban
and agricultural land cover than reference-site watersheds
(Dewitz 2023) (Fig. S2). On average, SC test-site watersheds
contained 38.2% (range 0-100%) forested land cover,
whereas the original and revised SC reference-site water-
sheds contained 62.3% (range 0—100%) and 56.2% (range
0-100%) forested land cover on average, respectively. The
mean % cover of urban and agriculture land use in SC test
watersheds was 0.1% (range 0-9.1%) and 0.7% (range 0—
59.7%), respectively. On average, SC reference-site water-
sheds contained <1% urban and agricultural land cover.
For TN and TP, test-site watersheds contained 38.9%
(range 0-98.2%) and 39.0% (range 0—98.2%) forested land
cover on average, respectively. TN and TP reference-site
watersheds had >60% forested land cover on average (range
for TN and TP 0-100%). Agricultural land cover at TN and
TP test sites ranged from 0% to 60%, whereas agricultural
land cover at TN and TP reference sites ranged from 0%
to 10% (Fig. S2). On average, urban land cover constituted
<1% of TN and TP reference-site and test watersheds.

Predictor variables

Ten predictor variables were included in the revised SC
model, whereas 19 predictor variables were included in the
original SC model (Table 1). Predictors in both the revised
and original SC models mainly represented climatic and lith-
ological associations with SC. The difference between pre-
cipitation and evapotranspiration (Precip_Minus_EVTWs)
and the percentages of Al,O3, CaO, and S were most strongly
associated with SC in the revised model (Table 1). Precip_
Minus_EVTWs and % Al,O3 in the surface lithology were
negatively related to SC, whereas % CaO and % S were pos-
itively related to SC (Table 1, Fig. 2A). Both maximum and
minimum temperatures (Tmax8110Ws and Tmin8110Ws;
30-y normals for 1981-2010) were strong predictors and
positively related to SC in the revised model (Table 1,
Fig. 2A). In comparison, % CaO, % S, maximum tempera-
ture, mean number of wet days, and mean annual precipita-
tion were the predictors most strongly associated with SC in
the original SC model (Table 1; see Table S2 for descriptions
of the predictors used in the original models). Similar to the
revised model, predictors related to precipitation were neg-
atively associated with SC, whereas temperature-related pre-
dictors were positively associated with SC (Table 1). Overall,
the revised and original models had 3 predictor variables in
common (% Ca0, % S, and maximum temperature).

Seven predictors were included in the revised TN model,
whereas the original TN model included 12 predictor variables



Table 1. List of the predictors included in the revised and original predictive models of spatial variation in specific conductivity (SC),
total N (TN), and total P (TP) at reference sites in the western United States. Var imp is the variable importance calculated as the %
increase in mean square error when the predictor is randomly permuted. Direction indicates the direction of the overall association
between the predictor and the water-chemistry constituent. Predictors that are common between the original and revised models are
in italics and have the same superscripts. Note that names for the same predictor variables can differ between the original and revised
models. Predictors that original and revised models have in common: CaOWs = % CaO, SWs = % S, Tmax8110Ws = maximum
temperature, DOY = day of the year. Ws refers to watershed-scale predictors from the StreamCat dataset. Detailed descriptions of

predictor variables can be found in Table S1 (revised models) and Table S2 (original models). N/A = not applicable.

Revised models Original models
Var Var
Model Predictor name Units imp Direction Predictor name Units imp Direction
SC Precip_Minus_EVTWs  km/ km? 47 - % CaO" % 63 +
AI203Ws % 40 - %S % 42 +
CaOWs' % 30 + Maximum temperature® °C 41 +
SWs* % 26 + Mean wet days dry 37 -
Tmin8110Ws °C 25 + Mean precipitation mm/y 35 -
NWs % 25 + Soil bulk density g/cm?® 33 +
Tmax8110Ws® °C 24 + Soil permeability inches/h 33 -
ElevWs m 24 - Atmospheric Mg mg/L 32 +
RunoffWs mm 22 - Atmospheric Ca mg/L 32 +
BFIWs ratio 17 - % MgO % 32 +
Atmospheric SO, mg/L 31 +
Mean maximum EVI N/A 30 +
Compressive strength MPa 30 -
Minimum precipitation mm/mo 29 -
Max wet days d/y 28 -
Soil erodibility N/A 28 +
Day last freeze Day of the
year 28 -
Log hydraulic log(m/s) 27 +
conductivity
Mean summer mm/mo 24 -
precipitation
TN Precip8110Ws mm/y 22 - Mean wet days dry 27 -
Precip_Minus_EVTWs  km/km? 20 - Minimum temperature °C 25 +
ElevW's m 19 - Atmospheric Na mg/L 24 +
RunoffWs mm 16 - Day of the year* d 24 -
BFIWs ratio 16 - Prior 2-mo precipitation mm/mo 23 -
PermWs cm/h 12 — Atmospheric NO3 mg/L 21 -
poy* Day of the 10
year - Atmospheric SO, mg/L 21 +
EVI N/A 20 +
Soil bulk density g/cm?® 18 -
Ground water index N/A 16 -
% evergreen % 15 -
% Alnus rubra dominated % 10 +
TP Precip8110Ws mm/y 26 - Gila Mountains N/A 36 +
ecoregion
Precip_Minus_EVTWs km/km? 24 - % volcanic lithology % 31 +
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Table 1. (Continued)

Revised models

Original models

Var Var
Model Predictor name Units imp Direction Predictor name Units imp Direction
P205W's % 22 + Previous year’s mm/y 26 -
precipitation
ClayWs % 21 + % CaO' % 24 -
CaOWs' % 20 - Relative humidity % 24 -
Tmax8110W's °C 20 + Minimum temperature °C 22 +
RunoffWs mm 19 - Area largest water body m> 21 -
SandW's % 17 - Mean channel slope % 21 -
WetlndexW's N/A 15 + Atmospheric Ca mg/L 21 +
Nele kg C/m> 20 -
EVI N/A 19 +
Soil water capacity fraction 19 +
Soil erodibility N/A 18 -
(K factor)
% P % 16 +
% Alfisols % 15 +

(Table 1). Precipitation-related predictors (Precip8110Ws and
Precip_ Minus_EVTWs), elevation (ElevWs), and predictors
related to water flow (RunoftWs, BFIWs) were most strongly
associated with [TN] in the revised model (Table 1).
Precip8110Ws and Precip_Minus EVI'Ws were negatively
associated with [TN] (Fig. 2B). ElevWs, RunoffWs, BFIWs,
and the mean permeability of soils within a watershed
(PermWs) were also important predictors (Table 1) and were
negatively related to [TN] (Fig. 2B) in the revised TN model. In
the original TN model, the mean number of wet days, mini-
mum temperature, and atmospheric Na deposition were most
strongly associated with [TN] (Table 1). DOY was included in
both the revised and original TN models, but it was relatively
more important in the original model than in the revised
model (% increase in MSE of 24% in the original model vs
10% in the revised model; Table 1).

The revised TP model included 9 predictor variables,
whereas the original TP model included 15 predictors (Ta-
ble 1). In the revised model, Precip8110Ws, Precip_ Minus_
EVTWs, % P,Os, and % clay content of the soils (ClayW's)
were most strongly associated with [TP] (Table 1). Similar
to [TN], Precip8110Ws and Precip_Minus_EVTWSs were
negatively related to [TP] (Table 1, Fig. 2C). The percentages
of P,Os, clay, and CaO in the surface lithology were also
strong predictors of [TP] (Table 1). Both P205Ws and
ClayWs were positively related to [TP], whereas CaOWs
was negatively related to [TP] (Table 1, Fig. 2C). The most
important predictors of [TP] in the original model were
% volcanic lithology, the previous year’s annual precipitation,
% CaO, and whether or not a site was located within the Gila
Mountains ecoregion, which contains large amounts of

young basalt rocks (Table 1). The % CaO content of the soil
was the only predictor the revised and original models had in
common.

Model development and evaluation

The revised and original SC models were similar in terms
of performance. The revised SC model explained ~74% of the
variation in SC across reference sites, whereas the original
model explained 78% (Table 2), and both were unbiased esti-
mators of SC (Table S3, Fig. 3A). The RMSE of the revised SC
model was ~8% of the range of observed SC (range 4—979 uS/
cm), and the MAE between predicted and observed SC was
50.5 pS/cm. The original SC model had an RMSE that
was ~6.5% of the range of observed SC values (range 133—
1171 pS/cm). The MAE of the original model was 42.2 puS/cm.

Predicted SC levels by the revised SC model were slightly
higher, on average, than those made by the original SC
model for reference sites but slightly lower, on average,
for test sites (Table 3). On average, the revised model pre-
dicted reference-site SC values that were 3.3 uS/cm higher
than those predicted by the original SC model (ranges 12.6—
836.9 uS/cm and 11.5-825.1 pS/cm for revised and original
models, respectively). Predictions of SC at reference sites by
the original model were highly correlated with predictions
by the revised model (» = 0.94), and the slope of the rela-
tionship between the 2 predictions was statistically indistin-
guishable from 1 (slope = 1.00, 95% CI = 0.98—1.02; Table S3,
Fig. 4A). Revised model predictions of naturally occur-
ring SC levels at test sites (range 30.6—685.6 1S/cm) were,
on average, 2.7 uS/cm lower than predictions by the original
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Figure 2. Partial dependence of predictor variables for the revised specific conductivity (SC; n = 1912) (A), total N (TN; n = 699)
(B), and total P (TP; n = 966) (C) random forest models at reference sites in the western United States. Precip_Minus_EVTWs =
precipitation minus evapotranspiration in the watershed; AL203Ws = watershed mean % lithological Al,O3 content in surface or
near-surface geology; CaOWs = watershed mean % lithological CaO content in surface or near-surface geology; SWs = watershed
mean % lithological S content in surface or near-surface geology; Tmin8110Ws = 30-y normal min. temperature (°C) in the water-
shed; NWs = watershed mean % lithological N content in surface or near-surface geology; Tmax8110Ws = 30-y normal max. tem-
perature (°C) in the watershed; ElevWs = mean watershed elevation (m); RunoffWs = mean runoff (mm) in the watershed; BFIWs =
baseflow index in the watershed; Precip8110Ws = 30-y normal mean precipitation in the watershed; PermWs = mean watershed soil
permeability (cm/h); DOY = day of the year; P205Ws = watershed mean % of lithological P,O5 content in surface or near-surface
geology; ClayWs = mean % clay content of soils in the watershed; SandWs = mean % sand content of soils; WetIndexWs = mean

composite topographic index in the watershed.

model (range 23.0-649.0 puS/cm; Table 3, Fig. 4B). Revised
and original model predictions were also highly correlated
at test sites (r = 0.91). However, the slope of the relationship
between original and revised predictions was >1 (slope
1.11,95% CI = 1.09-1.14), and the intercept was <O (intercept =
—24.32,95% CI = —30.29 to —18.49; Table S3, Fig. 4B), in-

dicating there was systematic bias in the predictions by one
or both models.

The revised TN model explained slightly more of the var-
iation in [TN] across reference sites (r* = 0.39) (Fig. 3B)
than the original TN model (+* = 0.32; Table 2). The RMSE
of the revised TN model was ~14% of the range of observed
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Table 2. Metrics of model performance for the original and revised water-quality models of spatial variation in specific conductivity
(SC), total N (TN), and total P (TP) at reference sites in the western United States. Metrics are based on the relationship between the
observed and internal out-of-bag predicted values for reference sites. NSE is the Nash—Sutcliffe model efficiency, RMSE is the root

mean square error, and MAE refers to the mean absolute error.

2

Model Indicator n r NSE RMSE MAE No. predictors
Original models SC 1390 0.78 0.78 67.3 42.2 19

TN 665 0.32 0.32 113.9 71.0 9

TP 752 0.40 0.40 20.5 10.6 15
Revised models SC 1912 0.74 0.74 81.1 50.5 10

TN 699 0.39 0.39 120.3 77.7 7

TP 966 0.38 0.38 19.4 13.1 9

values (range 5-879 pg/L), whereas it was 11.9% of the range
of observed values (range 5-960 pig/L) in the original model.
For the revised TN model, MAE was 77.7 pg/L, whereas it
was 71.0 pg/L for the original TN model.

Model predictions of [TN] were higher for revised than
original models at both reference and test sites. Revised
model predictions of [TN] at reference sites were slightly
higher (2.8 pug/L), on average, than predictions by the orig-
inal model (ranges 45.3-534.0 pg/L and 33.5-528.4 ng/L
for revised and original models, respectively; Table 3). Pre-
dictions by the 2 models were moderately and positively
correlated (r = 0.79), but the models were slightly biased
predictors of one another (slope = 1.08, 95% CI = 1.02—
1.15; Table S3, Fig. 4C). For test sites, revised model predic-
tions were, on average, 33.3 pug/L higher than predictions by
the original model (ranges 58.6—742.7 and 49.5-402.0 ng/L
for revised and original models, respectively; Table 3). Pre-
dictions by the revised and original models at test sites were
less strongly correlated (r = 0.51) with one another than
those observed for reference sites, but the slope of the rela-
tionship between the 2 models’ predictions approximated 1
(slope = 0.92, 95% CI = 0.84—1.01; Table S3, Fig. 4D).

The revised TP model performed similarly to the ori-
ginal TP model in terms of r* (0.38 vs 0.40), NSE (0.38
vs 0.40), RMSE (19.4 vs 20.5 pg/L), and MAE (13.1 vs
10.6 pg/L) (Table 2). Predicted values at reference sites
ranged between 1.3 and 92.6 pg/L for the revised model
(Fig. 3C) and between —0.7 and 77.6 ng/L for the original
model (Table 3). Predictions by the 2 models were moder-
ately correlated (r = 0.78), and the slope of their relationship
was not statistically different from 1 (slope = 1.06, 95% CI =
1.00-1.12; Table S3, Fig. 4E). For test sites, the revised model
predictions ranged from 6.0 to 85.6 pg/L, whereas predic-
tions by the original model ranged from 4.7 to 63.5 nug/L
(Table 3). Predictions by the 2 models at test sites were only
weakly (r = 0.58) correlated with one another, and the re-
vised and original models were biased predictors of one an-
other (slope = 0.73,95% CI = 0.68—0.79; Table S3, Fig. 4F).

Identifying sites outside reference-site
environmental space

The environmental space covered by the revised models
slightly increased with the addition of new reference sites.
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Figure 3. Plots of observed values as a function of predicted values from revised models at reference sites in the western United
States for specific conductivity (SC; n = 1912) (A), total N (TN; n = 699) (B), and total P (TP; n = 966) (C). The dashed line is the
1:1 line, and the solid line is the regression line based on ordinary least squares linear regression. Reference-site data for SC ranged
from 1965 to 2016, and data for TN and TP ranged from 1973 to 2015 and 1973 to 2019, respectively.
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Table 3. Summary statistics for predictions made using the original and revised water-quality models for reference and Bureau of
Land Management’s Assessment, Inventory and Monitoring Strategy test sites in the western United States. Difference was calculated

as the original predictions subtracted from the revised predictions for each site.

Original models Revised models Difference
Site type Indicator Mean Min. Max. Mean Min. Max. Mean Min. Max.
Reference SC 132.6 115 825.1 135.9 12.6 836.9 3.3 —363.8 363.0
N 142.0 335 528.4 144.8 453 534.0 2.8 —213.8 299.9
TP 20.0 —0.7 77.6 22.0 13 92.6 2.0 —28.5 65.1
Test SC 238.9 23.0 649.0 236.2 30.6 685.6 —27 —320.2 335.1
TN 191.7 49.5 402.0 225.1 58.6 742.7 33.4 —207.4 485.2
TP 28.1 4.7 63.5 37.5 6.0 85.6 9.4 —34.0 55.1

For example, the revised SC and TP models were more ap-
plicable to sites with smaller watersheds than the original
models (Table 4). The original SC and TP models were
trained on sites with watersheds that ranged in size from
0.6 to 25,362 km?. The revised SC model was trained on
sites with watersheds as small as 0.02 km?, and the revised
TN model was applicable to watersheds as small as 0.4 km?.
We were unable to add reference sites with watersheds
>25,362 km?2. In addition, the revised SC model was applica-
ble to sites at slightly lower and higher elevations than the
original SC model (Table 4). The revised SC model was
trained on sites that ranged from 82 to 3897 m a.s.l.,, whereas
the original SC model was trained on sites that ranged from
109 to 3773 m a.s.l. (an increase in range of 4.1%). The ranges
in minimum and maximum temperatures were also slightly
increased for the revised SC model (increases of 4.0% and
3.2%, respectively; Table 4). Adding additional reference sites
did not increase the range of precipitation covered for any of
the models.

Overall, slightly fewer test sites were assessed as being
outside reference-site environmental space as defined by
the revised set of reference sites than by the original refer-
ence sites. Of the 1957 test sites with SC values, 458 (23.4%)
fell outside the environmental space of the revised model’s
reference sites vs 481 (24.6%) for the original model. For
TN, 290 out of 1539 (18.8%) test sites were assessed as be-
ing outside reference-site environmental space by the re-
vised model reference sites vs 314 (20.4%) for the original
model reference sites. Of the 1547 test sites with [TP] val-
ues, 257 (16.6%) test sites were assessed as being outside the
revised model’s reference-site environmental space vs 354
(22.9%) for the original model’s reference sites. In general,
sites that were flagged as being outside the reference-site
environmental space had larger watersheds, higher temper-
atures, lower amounts of precipitation, and were at lower
elevations (Fig. S3). Based on the results of these tests, we
could confidently assess the predicted results from the re-
vised models for 1499 (~77%) SC test sites, 1249 (~81%)
TN test sites, and 1280 (~83%) TP test sites (Fig. S4).

Using prediction intervals to set
site-specific benchmarks

In general, QRF produced higher site-specific upper PLs
(95" percentile values) than the SEE method. For SC, upper
PLs derived from QRF ranged from 70.1 to 940.0 pS/cm,
whereas upper PLs from the SEE method ranged from
141.0 to 808.4 puS/cm (Fig. 5A). On average, upper PLs
for SC derived from QRF were ~100 pS/cm higher than
those derived from the SEE method (Wilcoxon rank-sum
test W = 825,410, p < 0.001). Of the 1499 SC test sites,
the QRF method flagged 21.4% as having SC values greater
than the upper PL, whereas the SEE method flagged 31.6%
of test sites (Table 5). Upper TN PLs produced by QRF
ranged from 88.0 to 879.0 pg/L, and those produced by
the SEE method ranged from 245.8 to 1000.8 pg/L. Similar
to upper PLs for SC, QRF upper PLs for TN were higher
than those produced by SEE (Wilcoxon rank-sum test W' =
474,186, p < 0.001; Fig. 5B). On average, QRF upper PLs
were 117 pg/L higher than those derived from SEE. Of
the 1249 TN test sites, QRF PLs flagged ~19.1% of sites
and SEE PLs flagged 25.6% of sites as having excess [TN]
(Table 5). Site-specific upper TP PLs derived from QRF
ranged from 13.1 to 149.0 pg/L. Upper TP PLs produced
by the SEE method ranged from 38.6 to 125.7 pg/L and
were generally 10 pg/L lower than upper PLs produced
by QRF (Wilcoxon rank-sum test W = 625,897, p < 0.001;
Fig. 5C). Of the 1280 TP test sites, 23.2% had observed
[TP] greater than the upper PL produced by QRF, whereas
26.2% had observed [TP] greater than the upper PL pro-
duced by SEE (Table 5).

Comparing site-specific and regional benchmarks

For each water-chemistry constituent, the percentage of
test sites that exceeded benchmarks varied depending on
whether regional or site-specific benchmarks were used.
Site-specific SC benchmarks (SEE and QRF) flagged a
higher percentage of test sites as being in nonreference
condition than regional-derived benchmarks. Only 9.1%
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Figure 4. Scatterplots depicting predicted water-quality indicator values at reference (A, C, E) and test (B, D, F) sites in the western
United States derived from the original models (y-axis) vs the revised models (x-axis). Predictions are for specific conductivity (SC)
(A, B), total N (TN) (C, D), and total P (TP) (E, F). The dashed line is the 1:1 line and the solid line is the regression line based on re-
duced major axis (RMA) regression. RMA statistics can be found in Table S2. Reference-site data for SC ranged from 1965 to 2016,
and data for TN and TP ranged from 1973 to 2015 and 1973 to 2019, respectively. Test-site data ranged from 2013 to 2021.

of SC test sites exceeded NRSA regional benchmarks,
whereas a much higher percentage of sites (21.4—31.6%) ex-
ceeded site-specific SC benchmarks (Table 5). In contrast,
for both [TN] and [TP], the use of regional NRSA bench-
marks flagged a higher percentage of sites with excessive
concentrations than site-specific benchmarks did. Specifi-
cally for [TN], the use of regional NRSA benchmarks
flagged 31.1% of test sites, whereas QRF and SEE bench-
marks flagged 19.1% and 25.6%, respectively (Table 5). For
[TP], regional benchmarks flagged 33.2% of test sites as be-
ing in nonreference condition, but only 23.2 to 26.3% of test

sites were flagged when assessed against site-specific bench-
marks (Table 5). The percentage of test sites flagged as be-
ing in nonreference condition also varied among ecoregions
for each water-chemistry constituent (Table S4).

DISCUSSION
Revised and original model performance

Our primary goal was to improve the performance of ex-
isting empirical models used to predict naturally occurring
spatial variation in SC, [TN], and [TP]. We also wanted to
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Table 4. The minimum and maximum values of 5 environmental variables used to assess the range in natural environmental condi-
tions of reference sites in the western United States for original and revised random forest models predicting spatial variation in water-
quality indicators: specific conductivity (SC), total N (TN), and total P (TP). WsAreaSqKm = watershed area (km?); Tmax8110Ws =
mean maximum temperature from 1981 to 2010 (°C) within the watershed; Tmin8110Ws = mean minimum temperature from 1981 to
2010 (°C) within the watershed; Precip8110Ws = mean annual precipitation from 1981 to 2010 (mm) within the watershed; ElevWs =
mean watershed elevation (m). % increase is the percentage of increase in the range of values.

Original Revised
Indicator Predictor Min. Max. Min. Max. % increase

SC WsAreaSqKm 0.6 25362.4 0.02 2707.8 <1
Tmax8110Ws 3.9 26.1 3.2 25.7 32
Tmin8110W's —8.2 12.0 —8.4 12.6 4.0

Precip8110W's 179.8 5195.4 193.3 3998.8 0

ElevWs 108.8 37734 82.0 3897.0 4.1

TN WsAreaSqgKm 0.6 25362.4 0.4 6098.3 <1
Tmax8110 3.9 26.1 5.9 21.4 0

Tmin8110W's —8.2 12.0 -7.0 7.5 0

Precip8110W's 179.8 5195.4 182.6 3599.5 0

ElevWs 108.8 3773.4 232.0 3260.0 0

TP WsAreaSqgKm 0.6 25362.4 1.5 6098.2 0
Tmax8110Ws 3.9 26.1 55 15.3 0

Tmin8110W's —8.2 12.0 —5.7 0.9 0

Precip8110W's 179.8 5195.4 305.3 1286.0 0

ElevWs 108.8 3773.4 755.8 2798.4 0

create models that were easier to compute and implement,
applicable to a wider range of environmental settings, free
from shifting-baseline issues, and able to provide site-specific
benchmarks. Although we did not achieve marked im-
provement in model accuracy and precision, the 3 revised
models do provide the following advantages over the orig-
inal models: 1) the revised models use reproducible predic-
tors from a consistent, standard, nationally available dataset
(StreamCat), which reduces the need for advanced GIS ex-
pertise; 2) the revised models were trained on a larger num-
ber of reference sites, which slightly increased the environ-
mental space to which the models can be applied; and 3) the
revised models are less susceptible to shifting-baseline is-
sues than other predictive models (e.g., Olson and Cormier
2019).

All 3 revised models produced relatively accurate predic-
tions, but model precision for [TN] and [TP] was still rela-
tively poor. Olson and Hawkins (2013) attributed the poor
precision of the original models to temporal and measure-
ment variation in SC, [TN], and [TP], as well as changes in an-
alytical methods by sampling agencies over time. These same
issues likely contributed to the poor precision of the revised
models because the original and revised models share many
of the same reference sites. Some of the unexplained varia-
tion in SC, [TN], and [TP] is also likely associated with var-
iation in reference-site quality (reference sites are minimally

disturbed and most are not pristine). Reference sites vary in
their quality (i.e., how much land use has occurred in their
watersheds). For example, the amount of agriculture within
our population of reference-site watersheds varied from 0%
to 8% (Fig. S2). In addition, neither the predictors used nor
the spatial and temporal resolution at which they were mea-
sured likely captured important naturally occurring biogeo-
chemical processes, especially those influencing [TN], and
to a lesser extent [TP], dynamics. For example, the TN
model included 1 relatively weak soil predictor (permeabil-
ity), which may be associated with N fixation and subse-
quent leaching to streams. However, we did not identify
any other predictor associated with N fixation, denitrifica-
tion, or nutrient uptake, which can strongly influence back-
ground nutrient concentrations in streams (Webster et al.
2016). Furthermore, it was striking that several of the selected
predictors for the TN model characterized abiotic processes
associated with dilution or mobilization (e.g., precipitation,
runoff, baseflow), not sources of N (e.g., % rock N). Account-
ing for local biogeochemical processes in future models
should increase our ability to predict nutrient concentrations
in freshwater ecosystems, but doing so remains a challenge
because some of these processes are still poorly understood
at large scales (Marcarelli et al. 2022).

In some cases, predictors exist that could potentially
better capture effects of local biogeochemical processes,
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models. The lower and upper hinges correspond to the 25™ and
75 percentiles, respectively. The lower and upper whiskers ex-
tend no further than 1.5x the interquartile range. Points repre-
sent outliers.

but we did not include them in our models because they can
be altered by anthropogenic activity. For example, land
cover and atmospheric N deposition predictors were read-
ily available and have been shown to be associated with
spatial variation in nutrient concentrations (Lek et al. 1999,
Greathouse et al. 2014, Shen et al. 2020, Lin et al. 2021).
However, it is difficult to determine how much spatial var-
iation in land cover or atmospheric N deposition is natural

and how much has been altered by human activities (e.g.,
logging, burning of fossil fuels).

Some researchers have used both natural predictors and
predictors altered by human activity (e.g., urban and agri-
cultural land cover) in models (Smith et al. 2003, Dodds
and Oakes 2004). These models often account for more
spatial variation across sites than our revised models, but
they are typically used to understand the relative impor-
tance of anthropogenic sources of ions to streams rather
than to predict reference-site concentrations. These models
could be used to extrapolate to the concentrations expected
under reference conditions by setting land-use disturbance
to 0, but such extrapolations suffer from much higher un-
certainty than the type of interpolations made by reference-
quality models. Additionally, the relationships between ion
concentrations and predictors such as land use are often
nonlinear, making linear models inappropriate for such
predictions (Dodds et al. 2010).

Benefits and drawbacks of using a standardized,
nationally available dataset of predictor variables

Some predictive models can also be difficult to imple-
ment. The original water-quality models of Olson and
Hawkins (2012, 2013) and Le et al. (2019) incorporated
complicated predictor variables that require watershed de-
lineations and special GIS layers from multiple sources
(e.g, LANDFIRE, MODIS). Moreover, several of the predic-
tor variables were calculated with GIS software that requires
expertise in geospatial analysis. For example, to characterize
the amount of rock—water contact occurring in a site’s wa-
tershed, the original TN model uses an index of groundwater
velocity as one of the input variables. This index is estimated
using a magnetic resonance imaging model (Baker et al.
2003) applied within a GIS environment, which can be a
complicated procedure for nonexpert GIS practitioners.
Our goal was to create models that would be easy to com-
pute, understand, and implement for all end users. With
the development of the StreamCat dataset (Hill et al.
2016), there is less need for geospatial expertise to calculate
landscape metrics. Our revised models incorporate only
StreamCat variables, allowing end users to quickly and easily
extract predictors.

Our predictive models based on the StreamCat dataset al-
low users to easily make predictions of water chemistry for
~2.1 million river km and their associated catchments in
the western United States. Importantly, these predictions
can be made without first having to delineate watersheds
and calculate predictor variables within a GIS environment.
Spatially explicit maps of such fine-scale predictions could be
used by scientists and land managers to visualize spatial pat-
terns in water chemistry and rapidly identify stream reaches
at risk of impairment or reaches that should be prioritized for
protection. Although it was beyond the scope of this project,
predictions of reference-condition water chemistry could be
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Table 5. The number of western United States test sites at which observed values exceeded the 95" percentile vs the number of test
sites at which observed values were below the 95" percentile for each benchmark method. The percentages of sites within each cate-
gory are in parentheses. QRF = quantile random forest, SEE = simple empirical error method, NRSA = National Rivers and Streams
Assessment. Test-site data were obtained from the Bureau of Land Management’s Assessment, Inventory and Monitoring Strategy
Lotic Indicators Hub (https://gbp-blm-egis.hub.arcgis.com/pages/aim, accessed August 2023) for models of 3 water-quality indicators:

specific conductivity (SC), total N (TN), and total P (TP).

QRF

SEE NRSA

Exceeded 95" per-  Below 95" per-
centile (no.) centile (no.)

Exceeded 95% per-
centile (no.)

Below 95% per-  Exceeded 95" per-  Below 95" per-
centile (no.) centile (no.) centile (no.)

Indicator n (% of sites) (% of sites) (% of sites) (% of sites) (% of sites) (% of sites)
sC 1499 321 (21.4) 1178 (78.6) 474 (31.6) 1025 (68.4) 136 (9.1) 1363 (90.9)
TN 1249 238 (19.1) 1011 (80.9) 320 (25.6) 929 (74.4) 388 (31.1) 861 (68.9)
TP 1280 297 (23.2) 983 (76.8) 337 (26.3) 943 (73.7) 425 (33.2) 855 (66.8)

expanded to over 4.2 million river km in the conterminous
United States if the models were trained on an expanded ref-
erence dataset.

The ease of obtaining predictor values without having to
first delineate watersheds comes at a cost, however. For ex-
ample, metrics in the StreamCat dataset characterize the
drainage area contributing to an entire NHD reach, which
can be relatively large, rather than the specific sample point.
This imprecision in specifying a site’s location and its asso-
ciated watershed could contribute to imprecise or inaccu-
rate predictions, especially for small headwater systems
that do not fall on the NHD network. However, despite
the imprecise matching of site location and associated
StreamCat predictors, we were still able to produce models
of comparable performance to the original models that
were based on point-specific metrics.

The StreamCat dataset does not include all possible var-
iables that could influence streamwater chemistry, but it
provides a useful set of predictors for modeling water qual-
ity. Ideally, the predictor variables used in these models
should be interpretable in terms of the mechanisms known
to influence the water-chemistry constituent being predicted.
The StreamCat dataset contains several predictors that
can be mechanistically linked to SC, [TN], and [TP] in sur-
face waters, although it is missing some potentially impor-
tant predictors (e.g., cover of N-fixing plants in the water-
shed). The StreamCat dataset contains predictor variables
related to 3 general processes that control concentrations
of ions in surface waters: 1) atmospheric precipitation,
2) the mineral composition and weathering of rock, and
3) evaporation (Gibbs 1970). Variables associated with pre-
cipitation, evapotranspiration, and lithology were consis-
tently the most important predictors in the 3 revised mod-
els. Most, if not all, of the relationships between predictors
and the water-quality constituents were interpretable (e.g.,
higher precipitation associated with lower [TN] and [TP]
because of dilution). Thus, the StreamCat and similar re-
gional and global datasets (e.g., HydroSHEDS, PRISM)

can produce interpretable predictive models that perform
well enough to address many water-resource-management
objectives.

Model applicability

Another goal in revising the original models was to make
the models applicable to a larger naturally occurring envi-
ronmental space. We trained all 3 revised models on a
greater number of reference sites than the original models,
but doing so did not appreciably increase the range of nat-
ural site conditions covered by the models. In particular, we
were unable to make the models applicable to sites with
watersheds larger than 25,362 km?2, which was one of our
goals. However, we did add reference sites from smaller wa-
tersheds (<0.6 km?) for the SC and TP models, which were
previously underrepresented. We were also able to increase
the elevation range slightly for the SC model. Thus, the re-
vised SC and TP models should be applicable to more head-
water mountain streams than the original models.

The addition of new reference sites also resulted in
fewer test sites being identified as outside of reference-site
environmental space for all 3 models, despite the small in-
creases in the range of naturally occurring reference-site
conditions. This result suggests that we indeed increased
the coverage of multidimensional environmental space by
including the new reference sites. Natural resource manag-
ers should therefore be able to assess a larger range of sites
with the revised models than with the original models.
Identifying sites outside of the experience of a model is
an important but often overlooked step in water-quality as-
sessment. When the environmental conditions of an as-
sessed site fall outside of the range of environmental condi-
tions of the pool of reference sites used to train the model,
the predictions will likely be inaccurate or imprecise. In this
study, we used a nearest-neighbor approach to identify out-
liers, but other methods exist (e.g., Mahalanobis distances).
The choice of method will ultimately depend on the goals of
the assessment program and ease of implementation.
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Revised models alleviated shifting-baseline issues

Another goal was to minimize shifting-baseline issues,
which may be of concern in water chemistry and other as-
sessments (Gillon et al. 2016). Shifting baselines can occur
when conditions at reference sites change over time because
of human activity and those effects are not adjusted for
(Pauly 1995). Nonstationary conditions can emerge when
predictors associated with climate (e.g., previous year’s pre-
cipitation), land use and cover (% urban development, % de-
ciduous forest), and infrastructure (e.g., miles of roads in a
watershed, number of dams) are used in models. Some water-
chemistry models use nonstationary variables to predict
how stream chemistry is expected to change under current
climate conditions. For example, Olson and Cormier’s na-
tional SC model (Olson and Cormier 2019) uses nonsta-
tionary predictors of climate (e.g., mean of monthly maxi-
mum temperature for the 2 mo before the sampling event)
to predict temporal variation in SC levels. Although models
that use temporally dynamic predictor variables may provide
more precise predictions, which may be useful in some situ-
ations (e.g., to parse effects of land use from climate effects
or to forecast future changes in water chemistry), routinely
incorporating current climate conditions into models to
predict reference-condition water chemistry can create po-
tentially serious shifting-baseline issues. Although long-term
climate metrics such as 30-y normals can alleviate shifting-
baseline issues to some extent, they are not without draw-
backs. Long-term averages will mask short-term variability
in water chemistry that would better characterize the true
range of naturally occurring variation expected under refer-
ence conditions, potentially limiting the responsiveness of as-
sessments to dynamic environmental changes. This trade-off
underscores the importance of carefully balancing temporal
resolution and stability when incorporating climate predic-
tors into models. Therefore, we suggest exercising caution
with both approaches and considering the specific goals of
the model application when setting benchmarks for
reference-condition water chemistry.

Using prediction limits to set water-quality benchmarks

In our study, the percentage of sites exceeding a bench-
mark varied from ~10 to ~30%, depending on the predic-
tion limit used or whether site-specific or ecoregion-wide
benchmarks were used. Upper prediction limits based on
the SEE method were generally lower than those based
on QREF, suggesting that benchmarks based on QRF could
increase the risk of type II errors of inference, which con-
tribute to continuing environmental degradation. How-
ever, the use of either method of site-specific modeling
should lead to more appropriate benchmarks and lower un-
certainty in their applicability than regionally set bench-
marks (Hawkins et al. 2010, van Dam et al. 2019). For exam-
ple, our results suggest that the SC benchmarks the USEPA
uses for NRSAs for western ecoregions are not representa-

tive of the true distribution of reference-condition SC val-
ues at sites in the western United States. In our study, the
95" percentile of the distribution of SC values observed
at reference sites was ~466 1S/cm, much lower than the
benchmarks of 1000 to 2000 puS/cm that the NRSA pro-
gram uses. Moreover, there is evidence that benchmarks
>1000 puS/cm are likely too high to be protective of aquatic
life, particularly for sensitive taxonomic groups. For ex-
ample, mayfly abundance, drift, and metabolism can be
strongly affected at SC levels <300 pS/cm (Clements and
Kotalik 2016). The use of underprotective benchmarks
could lead to considerable changes in community struc-
ture, the extirpation of species, and the further degradation
of freshwater habitats (Clements and Kotalik 2016). Re-
gional NRSA benchmarks for [TN] (range 249-1069 pg/
L) and [TP] (range 41-127 pg/L) were more consistent
with the 95 percentiles of the distribution of reference-site
concentrations for [TN] and [TP], which were ~552 pg/L
and 79 ng/L, respectively. However, our analyses imply that
the ecoregion-derived benchmarks for [TN] and [TP] may
be overprotective relative to either the SEE- or QRF-derived
benchmarks. However, this result varied by ecoregion for
both [TN] and [TP]. Our results suggest that ecoregion-
derived benchmarks may be overprotective relative to site-
specific benchmarks in some ecoregions (e.g, Western
Mountains) but underprotective in others (e.g., Northern
and Southern Plains).

Management implications

We developed predictive models for SC, [TN], and [TP]
based on a nationally available dataset that performed as well
as, or better than, models based on GIS-derived predictor
variables. Our revised models were anchored to a specific
time period, which avoids shifting-baseline issues associated
with nonstationarity in climate and should help manage-
ment agencies detect water-quality impairment of stream
and river reaches associated with both land use and climate
change across the western United States. We suggest that
similar site-specific models be used elsewhere to set water-
quality benchmarks. However, the choice of what method
to use when setting benchmarks should always be informed
by the specific objectives of a project (e.g., whether bench-
marks are to be used in a regulatory context or as a means
of tracking water-quality trends), the ease of estimating
benchmark values, and the ability to easily communicate
methods to stakeholders, managers, and policymakers.
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